[1]吕西林,全柳萌,蒋欢军.从16届世界地震工程大会看可恢复功能抗震结构研究趋势[J].地震工程与工程振动,2017,01(03):001-9.[doi:10.13197/j.eeev.2017.03.1.lüxl.001]
 Lü Xilin,QUAN Liumeng,JIANG Huanjun.Research trend of earthquake resilient structures seen from 16WCEE[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2017,01(03):001-9.[doi:10.13197/j.eeev.2017.03.1.lüxl.001]
点击复制

从16届世界地震工程大会看可恢复功能抗震结构研究趋势
分享到:

《地震工程与工程振动》[ISSN:/CN:]

卷:
01
期数:
2017年03期
页码:
001-9
栏目:
论文
出版日期:
2017-08-30

文章信息/Info

Title:
Research trend of earthquake resilient structures seen from 16WCEE
作者:
吕西林 全柳萌 蒋欢军
同济大学 土木工程防灾国家重点实验室, 上海 200092
Author(s):
Lü Xilin QUAN Liumeng JIANG Huanjun
State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China
关键词:
16届世界地震工程大会可恢复功能抗震结构研究进展摇摆结构自复位结构可更换构件
Keywords:
16WCEEearthquake resilient structureresearch progressrocking structureself-centering structurereplaceable member
分类号:
TU375
DOI:
10.13197/j.eeev.2017.03.1.lüxl.001
摘要:
可恢复功能抗震结构是指地震后不需修复或者稍加修复就可恢复使用功能的结构,目前已成为地震工程领域一个新的研究方向,近年来受到了全球地震工程学者与工程技术人员的广泛关注。2017年1月在智利圣地亚哥召开的第16届世界地震工程大会的主题为“可恢复功能-土木工程的新挑战”。本文从摇摆及自复位结构、带可更换构件的结构两方面对本次世界地震工程大会展示的有关可恢复功能抗震结构的国际研究进展进行了总结。按照结构体系的不同,介绍了可恢复功能抗震结构在框架结构、剪力墙结构、框架-剪力墙结构、桥梁结构中的研究现状。大量的试验研究和数值模拟结果表明了可恢复功能结构优良的抗震性能。在此基础上,对该领域今后的研究方向进行了展望。
Abstract:
The earthquake resilient structure is the structure which can restore the structural function immediately after a severe earthquake without significant repair, which has been a new research direction in the field of earthquake engineering, which has attracted more and more attention by the related scholars and technologists. The 16th World Conference on Earthquake Engineering was held in Santiago, Chile in the January of 2017, whose theme was‘Resilience, the new challenge in earthquake engineering’. In this paper the research advances in the field of earthquake resilient structures shown by this conference are summarized, focusing on the rocking and self-centering structure and the structure with replaceable components. The research progress of the application of earthquake resilient structures in moment frame structures, shear wall structures, frame-shear wall structures, bridge structures is introduced. The results of considerable experimental study and numerical analysis have verified good seismic performance of resilient structures. Based on the above reviewing results, the research orientation and prospect in the future are discussed finally.

参考文献/References:

[1] Bruneau M, Chang S E, Eguchi R T, et al. A framework to quantitatively assess and enhance the seismic resilience of communities[J]. Earthquake Spectra, 2003, 19(4):733-752.
[2] 吕西林,陈云,毛苑君.结构抗震设计的新概念-可恢复功能结构[J].同济大学学报:自然科学版,2011,39(7):941-948. Lü Xilin, CHEN Yun, MAO Yuanjun. New concept of structural seismic design:earthquake resilient structures[J].Journal of Tongji University:Natural Science,2011,39(7):941-948. (in Chinese)
[3] Qu Z, Tamura K, Wada A. Synthetic seismic design strategy for building structures in urban areas[C]//16WCEE. Santiago,2017,Paper No.2686.
[4] Ikeda M, Asai K, Gallardo R M. Study on residents’ disaster prevention awareness for tsunami in Valparaíso, Chile[C]//16WCEE. Santiago,2017,Paper No.2671.
[5] Mahin S. Resilience by design:a structural engineering perspective[C]//16WCEE. Santiago, 2017,Keynote lecture.
[6] 周颖,吕西林. 摇摆结构及自复位结构研究综述[J]. 建筑结构学报, 2011, 32(9):1-10. ZHOU Ying, Lü Xilin. State-of-the-art on rocking and self-centering structures[J]. Journal of Building Structures, 2011, 32(9):1-10.(in Chinese)
[7] Cui Y, Lu X L, Jiang C. Investigation of seismic performance of tri-axial reinforced concrete frames with self-centering capacity[C]//16WCEE. Santiago,2017,Paper No.305.
[8] Obara T, Watanabe H, Kono S, et al. Damage controlling performance of a full scale unbonded post-tensioned precast concrete beam[C]//16WCEE. Santiage,2017,Paper No.1882.
[9] Shim C S, Song H H, Koem C, el al. Cyclic behavior of post-earthquake repaired post tensioned precast columns with HPFRCC[C]//16WCEE. Santiago,2017,Paper No.184.
[10] Lee C L. Force-based beam-column element with multispring models for modeling post-tensioned rocking members[C]//16WCEE. Santiago,2017,Paper No.1284.
[11] Granello G, Smith T, Sarti F, el al. Post-tensioning loss influence on the seismic response of timber frames[C]//16WCEE. Santiago,2017,Paper No.1219.
[12] Tahmasebi E, Sause R, Ricles J M. Probabilistic seismic damage analysis of steel self-centering concentrically braced frame systems[C]//16WCEE. Santiago,2017,Paper No.2811.
[13] Chancellor N B, Sause R, Ricles J M. Design and validation of steel self-centering concentrically-braced frames[C]//16WCEE. Santiago,2017,Paper No.2705.
[14] Steele T C, Wiebe L D A. Collapse assessment of controlled rocking steel braced frames with different rocking joint parameters[C]//16WCEE. Santiago,2017,Paper No.2963.
[15] Nazari M, Sritharan S. Energy dissipation components of precast concrete single rocking walls[C]//16WCEE. Santiago,2017,Paper No.3126.
[16] Wang X Y, Lu W S, Han J P. Numerical modeling of self-centering steel plate shear walls[C]//16WCEE. Santiago,2017,Paper No.1306.
[17] Tsai C Y, Clayton P M, Berman J W, el.at. Investigating self-centering steel plate shear wall boundary frame efficiency using finite-element analyses[C]//16WCEE. Santiago,2017,Paper No.3138.
[18] Gavridou S, Wallace J W, Nagae T, et al. Shake-table testing and analytical modeling of a fullscale 4-story unbonded post-tensioned concrete building[C]//16WCEE. Santiago,2017,Paper No.2274.
[19] Salinas R, Rodríguez M, Sánchez R. Evaluation of seismic responses of building systems with self-centering concrete structural walls[C]//16WCEE. Santiago,2017,Paper No.2610.
[20] Li C, Hao H, Zhang X. Analysis of precast segmental concrete columns with unbonded post-tensioned tendons under cyclic loading[C]//16WCEE. Santiago,2017,Paper No.1769.
[21] Li C, Hao H, Zhang X.Cyclic tests of precast segmental concrete columns with 1 unbonded post-tensioned tendons[C]//16WCEE. Santiago,2017,Paper No.1747.
[22] Liu R, Palermo A. Quasi-static testing of a large-scale bridge with dissipative controlled rocking connections in the superstructure[C]//16WCEE. Santiago,2017,Paper No.1372.
[23] Chegini Z, Palermo A. Quasi-static testing of a 1/3 scale precast concrete bridge utilising a post-tensioned dissipative controlled rocking pier[C]//16WCEE. Santiago,2017,Paper No.806.
[24] Guerrini G, Restrepo J I, Schoettler M J. Self-centering, low-damage, precast post-tensioned columns for accelerated bridge construction in seismic regions[C]//16WCEE. Santiago,2017,Paper No.3921.
[25] Titirla M, Zarkadoulas N, Mitoulis S, et al. Rocking isolation of bridge piers using elastomeric pads[C]//16WCEE. Santiago,2017,Paper No.4040.
[26] Stevens D, Wiebe L. Large-scale testing of a replaceable connection for concentrically braced frames[C]//16WCEE. Santiago,2017,Paper No.3354.
[27] Volynkin D, Clifton G C, Dusicka P. Cyclic performance of shear links with contact stiffeners[C]//16WCEE. Santiago,2017,Paper No.3312.
[28] Liu Q Z, Jiang H J. Study on a new type of earthquake resilient shear wall[C]//16WCEE. Santiago,2017,Paper No.524.

相似文献/References:

[1]孙锐,杨洋,袁晓铭.土体液化研究的新探索[J].地震工程与工程振动,2017,01(03):175.[doi:10.13197/j.eeev.2017.03.175.sunr.019]
 SUN Rui,YANG Yang,YUAN Xiaoming.New exploration of soil liquefaction[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2017,01(03):175.[doi:10.13197/j.eeev.2017.03.175.sunr.019]

备注/Memo

备注/Memo:
收稿日期:2017-3-25;改回日期:2017-4-26。
基金项目:国家自然科学基金项目(51638012,51478354)
作者简介:吕西林(1955-),男,教授,博士,主要从事工程结构抗震防灾研究.E-mail:lxlst@tongji.edu.cn
通讯作者:蒋欢军(1973-),男,教授,博士,主要从事工程结构抗震防灾研究.E-mail:jhj73@tongji.edu.cn
更新日期/Last Update: 1900-01-01