[1]李鸿晶,王竞雄.生命线地震工程的若干最新研究进展[J].地震工程与工程振动,2017,01(03):010-26.[doi:10.13197/j.eeev.2017.03.10.lihj.002]
 LI Hongjing,WANG Jingxiong.Recent research advances in lifeline earthquake engineering[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2017,01(03):010-26.[doi:10.13197/j.eeev.2017.03.10.lihj.002]
点击复制

生命线地震工程的若干最新研究进展
分享到:

《地震工程与工程振动》[ISSN:/CN:]

卷:
01
期数:
2017年03期
页码:
010-26
栏目:
论文
出版日期:
2017-08-30

文章信息/Info

Title:
Recent research advances in lifeline earthquake engineering
作者:
李鸿晶 王竞雄
南京工业大学 土木工程学院, 江苏 南京 211816
Author(s):
LI Hongjing WANG Jingxiong
College of Civil Engineering, Nanjing Technology University, Nanjing 211816, China
关键词:
研究进展生命线地震工程埋地管线隧道世界地震工程会议
Keywords:
state-of-the-artlifeline earthquake engineeringburied pipelinestunnels16WCEE
分类号:
P315.9
DOI:
10.13197/j.eeev.2017.03.10.lihj.002
摘要:
本文回顾了国内外生命线地震工程领域近10年来的研究进展。通过统计中英文期刊上的论文发表数量,分析了生命线地震工程各研究方向的发展动态。总结了埋地管道和隧道与地下结构两个方面的研究进展,并重点梳理了埋地管线抗震研究中大型试验、精细化模拟和理论方法3个方面的研究成果。最后,结合第16届世界地震工程大会(16WCEE)上发表的最新研究成果,对未来生命线地震工程研究的发展进行了分析与展望。
Abstract:
The development of researches on lifeline earthquake engineering in the past decade was surveyed in this paper. The corresponding papers published both in Chinese and international journals were reviewed, and the development trends of the field of lifeline earthquake engineering, including buried pipelines and tunnels, were discussed. Particular emphasis was given to the research findings of large-scale experiments, refined simulations and analytical methods about buried pipelines. Finally, based on the papers presented in 16WCEE, some suggestions about further research on lifeline earthquake engineering were suggested.

参考文献/References:

[1] Ha D, Abdoun T H, O’Rourke M J, et al. Buried high-density polyethylene pipelines subjected to normal and strike-slip faulting-a centrifuge investigation[J]. Canadian Geotechnical Journal, 2008, 45(12):1733-1742.
[2] Ha D, Abdoun T H, O’Rourke M J, et al. Earthquake faulting effects on buried pipelines-case history and centrifuge study[J]. Journal of Earthquake Engineering, 2010, 14(5):646-669.
[3] Da H, Abdoun T H, O’Rourke M J, et al. Centrifuge modeling of earthquake effects on buried high-density polyethylene (HDPE) pipelines crossing fault zones[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2008, 134(10):1501-1515.
[4] Abdoun T H, Ha D, O’Rourke M J, et al. Factors influencing the behavior of buried pipelines subjected to earthquake faulting[J]. Soil Dynamics and Earthquake Engineering, 2009, 29(3):415-427.
[5] Guidelines for the Seismic Design of Oil and Gas Pipeline Systems[S]. New York, American Society of Civil Engineers (ASCE),1984.
[6] Rojhani M, Moradi M, Galandarzadeh A, et al. Centrifuge modeling of buried continuous pipelines subjected to reverse faulting[J]. Canadian Geotechnical Journal, 2012, 49(6):659-670.
[7] Moradi M, Rojhani M, Galandarzadeh A, et al. Centrifuge modeling of buried continuous pipelines subjected to normal faulting[J]. Earthquake Engineering and Engineering Vibration, 2013, 12(1):155-164.
[8] 冯启民, 郭恩栋, 宋银美, 等. 跨断层埋地管道抗震试验[J]. 地震工程与工程振动, 2000, 20(1):56-62. FENG Qimin, GUO Endong, SONG Yinmei, et al. Aseismic test of buried pipe crossing fault[J]. Earthquake Engineering and Engineering Dynamics, 2000, 20(1):56-62. (in Chinese)
[9] 张志超, 王进廷, 徐艳杰. 跨断层地下管线振动台模型试验研究(Ⅰ)——试验方案设计[J]. 土木工程学报, 2011,44(11):93-98. ZHANG Zhichao, WANG Jinting, XU Yanjie. Shaking table test for cross-fault buried pipelines (Ⅰ)-model design[J]. China Civil Engineering Journal, 2011,44(11):93-98. (in Chinese)
[10] 张志超, 王进廷, 徐艳杰. 跨断层地下管线振动台模型试验研究Ⅱ:试验成果分析[J]. 土木工程学报, 2011,44(12):116-125. ZHANG Zhichao, WANG Jinting, XU Yanjie. Shaking table test of cross-fault buried pipelinesⅡ:test results[J]. China Civil Engineering Journal, 2011,44(12):116-125. (in Chinese)
[11] Sim W W, Towhata I, Yamada S. One-g shaking-table experiments on buried pipelines crossing a strike-slip fault[J]. Geotechnique, 2012, 62(12):1067-1079.
[12] Sim W W, Towhata I, Yamada S, et al. Shaking table tests modelling small diameter pipes crossing a vertical fault[J]. Soil Dynamics and Earthquake Engineering, 2012, 35:59-71.
[13] 孟海, 陈隽, 李杰,等. 地下管线-土非一致激励振动台试验研究[J]. 地下空间与工程学报, 2008, 4(5):852-859. MENG Hai, CHEN Jun, LI Jie, et al. Shaking table test of soil-pipe dynamic interaction under non-uniform earthquake wave excitation[J]. Chinese Journal of Underground Space and Engineering, 2008, 4(5):852-859. (in Chinese)
[14] 孟海, 李杰, 陈隽. 埋地有接头管-土非一致激励振动台试验研究[J]. 西安建筑科技大学学报:自然科学版, 2010, 42(5):683-689. MENG Hai, LI Jie, CHEN Jun. Shaking table test of soil-pipe with joint dynamic interaction under non-uniform earthquake wave excitation[J]. Journal of Xi’an University of Architecture and Technology:Natural Science Edition, 2010, 42(5):683-689. (in Chinese)
[15] 李立云, 王成波, 韩俊艳,等. 埋地管道-场地地震反应振动台试验研究的场地响应[J]. 地震工程与工程振动, 2015, 1(3):166-176. LI Liyun, WANG Chengbo, HAN Junyan, et al. Analysis of site responses during shaking table test for the interaction between pipeline and soil[J]. Earthquake Engineering and Engineering Dynamics, 2015, 1(3):166-176. (in Chinese)
[16] O’Rourke T D. Geohazards and large, geographically distributed systems[J]. Géotechnique, 2010, 60(7):505-543.
[17] O’Rourke T D, Jung J K, Argyrou C. Underground pipeline response to earthquake-induced ground deformation[J]. Soil Dynamics and Earthquake Engineering, 2016, 91:272-283.
[18] Jalali H H, Rofooei F R, Attari N K A, et al. Experimental and finite element study of the reverse faulting effects on buried continuous steel gas pipelines[J]. Soil Dynamics and Earthquake Engineering, 2016, 86:1-14.
[19] Erami M H, Miyajima M, Kaneko S, et al. Pipe-soil interaction for segmented buried pipelines subjected to dip faults[J]. Earthquake Engineering & Structural Dynamics, 2014, 44(3):403-417.
[20] 李鸿晶, 薛娜, 周正华, 等. 供水用埋地管道原位断层模拟实验[C]//第八届全国地震工程学术会议, 重庆,2010:574-577.
[21] Li H, Xue N, Li X, et al. An in-situ experimental study on buried pipelines with internal pressure subject to a simulated reverse-slip fault movement[C]//The 15th World Conference on Earthquake Engineering(15WCEE), Lisboa, 2012:574-577.
[22] Wang C, Liu W, Li J. Artificial earthquake test of buried water distribution network[J]. Soil Dynamics and Earthquake Engineering, 2015, 79:171-185.
[23] Miao H, Liu W, Wang C, et al. Artificial earthquake test of gas supply networks[J]. Soil Dynamics and Earthquake Engineering, 2016, 90:510-520.
[24] Vazouras P, Karamanos S A, Dakoulas P. Finite element analysis of buried steel pipelines under strike-slip fault displacements[J]. Soil Dynamics and Earthquake Engineering, 2010, 30(11):1361-1376.
[25] Vazouras P, Karamanos S A, Dakoulas P. Mechanical behavior of buried steel pipes crossing active strike-slip faults[J]. Soil Dynamics and Earthquake Engineering, 2012, 41(5):164-180.
[26] Xiaojian Xie, Michael D. Symans, Michael J. O’Rourke, et al. Numerical modeling of buried HDPE pipelines subjected to strike-slip faulting[J]. Journal of Earthquake Engineering, 2011, 15(8):1273-1296.
[27] Xie X, Symans M D, O’Rourke M J, et al. Numerical modeling of buried HDPE pipelines subjected to normal faulting:a case study[J]. Earthquake Spectra, 2013, 29(2):609-632.
[28] Lee D H, Kim B H, Lee H, et al. Seismic behavior of a buried gas pipeline under earthquake excitations[J]. Engineering Structures, 2009, 31(5):1011-1023.
[29] Shi P. Seismic wave propagation effects on buried segmented pipelines[J]. Soil Dynamics and Earthquake Engineering, 2015, 72:89-98.
[30] 薛娜, 李鸿晶, 孙广俊. 跨断层埋地管线-土接触非连续变形分析[J]. 力学季刊, 2013, 34(2):324-330. XUE Na, LI Hongjing, SUN Guangjun. Discontinuous deformation analysis on pipe-soil contact of buried pipeline due to fault[J]. Chinese Quarterly of Mechanisms, 2013, 34(2):324-330. (in Chinese)
[31] Jung J K, O’Rourke T D, Olson N A. Lateral soil-pipe interaction in dry and partially saturated sand[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2013, 139(12):2028-2036.
[32] Jung J K, O’Rourke T D, Olson N A. Uplift soil-pipe interaction in granular soil[J]. Canadian Geotechnical Journal, 2013, 50(50):744-753.
[33] Jung J K, O’Rourke T D, Argyrou M C. Multi-directional force-displacement response of underground pipe in sand[J]. Canadian Geotechnical Journal, 2016, 53(11):1763-1781.
[34] Robert D J, Soga K, O’Rourke T D. Pipelines subjected to fault movement in dry and unsaturated soils[J]. International Journal of Geomechanics, 2016, 16(5):C4016001.
[35] Newmark N M, Hall W J. Pipeline design to resist large fault displacement[C]//Proceedings of the US national conference on earthquake engineering. Ann Arbor:University of Michigan, 1975:416-425.
[36] Kennedy R P, Chow A W, Williamson R A. Fault movement effects on buried oil pipeline[J]. Transport Engineering Journal ASCE, 1977, 103(5):617-633.
[37] Wang L R L, Yeh Y A. A refined seismic analysis and design of buried pipeline for fault movement[J]. Earthquake Engineering & Structural Dynamics, 1985, 13(1):75-96.
[38] Karamitros D K, Bouckovalas G D, Kouretzis G P. Stress analysis of buried steel pipelines at strike-slip fault crossings[J]. Soil Dynamics and Earthquake Engineering, 2007, 27(3):200-211.
[39] Karamitros D K, Bouckovalas G D, Kouretzis G P, et al. An analytical method for strength verification of buried steel pipelines at normal fault crossings[J]. Soil Dynamics and Earthquake Engineering, 2011, 31(11):1452-1464.
[40] Trifonov O V, Cherniy V P. A semi-analytical approach to a nonlinear stress-strain analysis of buried steel pipelines crossing active faults[J]. Soil Dynamics and Earthquake Engineering, 2010, 30:1298-1308.
[41] Trifonov O V, Cherniy V P. Elastoplastic stress-strain analysis of buried steel pipelines subjected to fault displacements with account for service loads[J]. Soil Dynamics and Earthquake Engineering, 2012, 33(1):54-62.
[42] Newmark N M. Problems in wave propagation in soil and rock[C]//Proceedings of the International Symposium on Wave Propagationand Dynamic Properties of Earth Materials. Albuquerque N M. University of New Mexico Press, 1968:7-26.
[43] Kuesel T R. Earthquake design criteria for subways[J]. Journal of the Structural Division ASCE, 1969, ST6:1213-1231.
[44] Yeh G C K. Seismic analysis of slender buried beams[J]. Bulletin of the Seismological Society of America, 1974, 64(5):1551-1562.
[45] Kouretzis G P, Bouckovalas G D, Gantes C J. 3-D shell analysis of cylindrical underground structures under seismic shear (S) wave action[J]. Soil Dynamics and Earthquake Engineering, 2006, 26(10):909-921.
[46] Kouretzis G P, Bouckovalas G D, Karamitros D K. Seismic verification of long cylindrical underground structures considering Rayleigh wave effects[J]. Tunnelling and Underground Space Technology, 2011, 26(6):789-794.
[47] 陈国兴, 左熹, 王志华, 等. 地铁车站结构近远场地震反应特性振动台试验[J]. 浙江大学学报:工学版, 2010,44(10):1955-1961. CHEN Guoxing, ZUO Xi, WANG Zhihua, et al. Shaking table model test of subway station structure under far field and near field ground motion[J]. Journal of Zhejiang University:Engineering Science, 2010,44(10):1955-1961. (in Chinese)
[48] 陈国兴, 左熹, 王志华, 等. 近远场地震作用下液化地基上地铁车站结构动力损伤特性的振动台试验[J]. 土木工程学报, 2010,43(12):120-126. CHEN Guoxing, ZUO Xi, WANG Zhihua, et al. Large scale shaking table test study of the dynamic damage behavior of subway station structures in liquefiable foundation under near-fault and far-field ground motions[J]. China Civil Engineering Journal,2010,43(12):120-126. (in Chinese)
[49] 车爱兰, 岩檐敞广, 葛修润. 关于地铁地震响应的模型振动试验及数值分析[J]. 岩土力学, 2006, 27(8):1293-1298. CHE Ailan, IWATATE Takahiro, GE Xiurun. Dynamic behavior of subway structure subjected to strong earthquake motions using shaking table tests and dynamic analyses[J]. Rocks and Soil Mechanics, 2006, 27(8):1293-1298. (in Chinese)
[50] 陶连金, 王沛霖, 边金. 典型地铁车站结构振动台模型试验[J]. 北京工业大学学报, 2006, 32(9):798-801. TAO Lianjin, WANG Peilin, BIAN Jin.A shaking table test method on the representative subway station structure[J]. Journal of Beijing University of Technology, 2006, 32(9):798-801. (in Chinese)
[51] 景立平, 孟宪春, 孙海峰, 等. 三层地铁车站振动台试验分析[J]. 地震工程与工程振动, 2011, 31(6):159-166. JING Liping, MENG Xianchun, SUN Haifeng, et al. Shaking table test analysis of three-story subway station[J]. Earthquake Engineering and Engineering Dynamics, 2011, 31(6):159-166. (in Chinese)
[52] 赵源, 杜修力, 李立云. 地震动入射角度对地下结构地震响应的影响[J]. 防灾减灾工程学报, 2010, 30(6):624-630. ZHAO Yuan, Du Xiuli, LI Liyun.The effect of obliquely incident seismic waves on dynamic response of underground structures[J]. Journal of Disaster Prevention and Mitigation Engineering, 2010, 30(6):624-630. (in Chinese)
[53] 庄海洋, 王修信, 陈国兴. 软土层埋深变化对地铁车站结构地震反应的影响规律研究[J]. 岩土工程学报, 2009, 31(8):1258-1266. ZHUANG Haiyang, WANG Xiuxin, CHEN Guoxing.Earthquake responses of subway station with different depths of soft soil[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(8):1258-1266. (in Chinese)
[54] 庄海洋, 陈国兴, 王修信. 软土层厚度对地铁车站结构地震反应的影响规律研究[J]. 地震工程与工程振动, 2008, 28(6):245-253. ZHUANG Haiyang, CHEN Guoxing, WANG Xiuxin. Study on the earthquake response of subway station built with different thicknesses of soft soil layers in the foundation[J]. Earthquake Engineering and Engineering Dynamics, 2008, 28(6):245-253. (in Chinese)
[55] 何剑平, 陈卫忠. 液化场浅埋地下结构动力特性数值分析[J]. 地下空间与工程学报, 2013,9(1):66-72. HE Jianping, CHEN Weizhong.The numerical analysis of dynamic characteristics for shallow underground structures in LP field[J]. Chinese Journal of Underground Space and Engineering, 2013,9(1):66-72. (in Chinese)
[56] 王刚, 张建民, 魏星. 可液化土层中地下车站的地震反应分析[J]. 岩土工程学报, 2011, 33(10):1623-1627. WANg Gang, ZHANG Jianmin, WEI Xing.Seismic response analysis of a subway station in liquefiable soil[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(10):1623-1627. (in Chinese)
[57] Sánchez Merino A L, FernándezSáez J, Navarro C. Simplified longitudinal seismic response of tunnels linings subjected to surface waves[J]. Soil Dynamics and Earthquake Engineering, 2009, 29(3):579-582.
[58] 李鹏, 宋二祥. 隧道纵向非一致地震反应的三维数值分析[J]. 地震工程与工程振动, 2014(S1):274-280. LI Peng, SONG Erxiang. Three-dimensional numerical analysis for longitudinal asynchronous seismic response of tunnels[J]. Earthquake Engineering and Engineering Dynamics, 2014(S1):274-280. (in Chinese)
[59] 袁勇, 申中原, 禹海涛. 沉管隧道纵向地震响应分析的多体动力学方法[J]. 工程力学, 2015, 32(5):76-83. YUAN Yong, SHEN Zhongyuan, YU Haitao. Multibody dynamics method for longitudinal seismic response analysis of immersed tunnels[J]. Engineering Mechanics, 2015, 32(5):76-83. (in Chinese)
[60] 刘鸿哲, 黄茂松. 超长沉管隧道纵向地震响应频域分析方法[J]. 岩土工程学报, 2015, 37(11):1971-1978. LIU Hongzhe, HUANG Maosong. Frequency-domain analysis method for longitudinal seismic response of super-long immersed tunnels[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(11):1971-1978. (in Chinese)
[61] 孔戈, 周健, 徐建平,等. 盾构隧道横向地震响应规律研究[J]. 岩石力学与工程学报, 2007, 26(增1):2872-2879. KONG Ge, ZHOU Jian, XU Jianping, et al. Study on characteristics of transverse seismic response of shield tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S1):2872-2879. (in Chinese)
[62] 黄茂松, 刘鸿哲, 曹杰,等. 盾构隧道横向抗震设计分析方法与验证[J]. 世界地震工程, 2011, 27(1):60-65. HUANG Maosong, LIU Hongzhe, CAO Jie, et al. Transverse seismic design analysis methods and test of shield tunnels[J]. World Earthquake Engineering, 2011, 27(1):60-65. (in Chinese)
[63] 黄茂松, 刘鸿哲, 曹杰. 软土隧道横向抗震分析的简化响应位移法[J]. 岩土力学, 2012, 33(10):3115-3121. HUANG Maosong, LIU Hongzhe, CAO Jie. Simplified response displacement method for transverse a seismic analysis of soft soil tunnel[J]. Rock and Soil Mechanics, 2012, 33(10):3115-3121. (in Chinese)
[64] 申中原, 禹海涛, 袁勇. 沉管隧道横向动力响应分析的多体动力学方法[J]. 力学与实践, 2016, 38(1):63-71. SHEN Zhongyuan, YU Haitao, YUAN Yong. Multibody dynamics method for transverse seismic response analysis of immersed tunnels[J]. Mechanics in Engineering, 2016, 38(1):63-71. (in Chinese)
[65] 杨小礼, 黄波, 王作伟. 水平地震力作用下浅埋偏压隧道松动围岩压力的研究[J]. 中南大学学报:自然科学版, 2010, 41(3):1090-1095. YANG Xiaoli, HUANG Bo, WANG Zuowe. Rock failure pressure of shallow tunnel subjected to horizontal seismic and unsymmetrical loads[J]. Journal of Central South University:Science and Technology, 2010, 41(3):1090-1095. (in Chinese)
[66] 周佳媚, 袁松, 高波. 小净距隧道地震动力响应下的围岩应力场[J]. 公路交通科技, 2012, 29(2):96-101. ZHOU Jiamei, YUAN Song,GAO Bo. Surrounding rock stress field under earthquake-induced dynamic response of tunnels with small spacing[J]. Journal of Highway and Transportation Research and Development, 2012, 29(2):96-101. (in Chinese)
[67] 杨志华, 兰恒星, 张永双,等. 强震作用下穿越断层隧道围岩力学响应研究[J]. 工程地质学报, 2013, 21(2):171-181. YANG Zhihua, LAN Hengxing, ZHANG Yongshuang, et al. Rock dynamics response of railway tunnel traversing through fault under strong earthquake[J]. Journal of Engineering Geology, 2013, 21(2):171-181. (in Chinese)
[68] 张治国, 徐晓洋, 赵其华. 水平地震力作用下浅埋偏压隧道围岩压力的简化理论分析[J]. 岩土力学, 2016(增2):16-24. Zhang Zhiguo, XU Xiaoyang, ZHAO Qihua. Simple theoretical analysis of rock pressure for shallow unsymmetrical-loading tunnels considering horizontal earthquake action[J]. Rock and Soil Mechanics, 2016(S2):16-24. (in Chinese)
[69] 梁建文, 朱俊. 地下隧道横截面内地震动土作用分析[J]. 地震工程与工程振动, 2016, 36(4):54-69. LIANG Jianwen, Zhu Jun. Seismic soil pressure on underground tunnel in transverse direction[J]. Earthquake Engineering and Earthquake Dynamics, 2016, 36(4):54-69. (in Chinese)
[70] 侯森, 陶连金, 李书龙, 等. 山岭隧道洞口段设置减震层的振动台模型试验研究[J]. 世界地震工程, 2014, 30(3):187-195. HOU Sen, TAO Lianjian, LI Shulong, et al. Shaking table test for dynamic response in portal section of mountain tunnel with shock absorption layer[J]. World Earthquake Engineering, 2014, 30(3):187-195. (in Chinese)
[71] 耿萍, 唐金良, 权乾龙, 等. 穿越断层破碎带隧道设置减震层的振动台模型试验[J]. 中南大学学报:自然科学版, 2013, 44(6):2520-2526. GENG Ping, TANG Jinliang, QUAN Qianlong, et al. Shaking table test for tunnel with shock absorption layer through fault zone[J]. Journal of Central South University (Science and Technology), 2013, 44(6):2520-2526. (in Chinese)
[72] 仇文革, 舒磊, 胡辉, 等. 高压缩性混凝土材料在隧道穿越断层带的应用及减震效果研究[J]. 材料导报, 2012, 26(20):154-157. QIU Wenge, SHU Lei, HU Lei, et al. Application of high compression ratio concrete on tunnel crossing fault zone and damping effect study[J].Materials Review, 2012, 26(20):154-157. (in Chinese)
[73] 陈庆, 单雪丽, 曾海鹏. 泡沫混凝土减震层对隧道地震响应影响分析[J]. 福州大学学报:自然科学版, 2013, 41(4):687-693. CHEN Qing, SHAN Xueli, ZENG Haipeng. Analysis of influences of foam concrete buffer layer on seismic response of tunnels[J]. Journal of Fuzhou University:Natural Science Edition, 2013, 41(4):687-693. (in Chinese)
[74] 王明年, 崔光耀. 高烈度地震区隧道设置减震层的减震原理研究[J]. 土木工程学报, 2011, 44(8):126-131. WANG Mingnian, CUI Guangyao. Study of the mechanism of shock absorption layer in the supporting system of tunnels in highly seismic areas[J]. China Civil Engineering Journal, 2011, 44(8):126-131. (in Chinese)
[75] 徐华, 李天斌. 隧道不同减震层的地震动力响应与减震效果分析[J]. 土木工程学报, 2011(S1):201-208. XU Hua, LI Tianbin. Seismic dynamic response and damping effect analysis of different buffer layers on tunnels[J]. China Civil Engineering Journal, 2011(S1):201-208. (in Chinese)
[76] 崔光耀, 王明年, 于丽, 等. 断裂黏滑隧道减震缝减震技术模型试验研究[J]. 岩石力学与工程学报, 2013, 32(8):1603-1609. CUI Guangyao, WANG Mingnian, YU Li, et al. Model test study of shock absorption joint damping technology of crossing stick-slip fracture tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(8):1603-1609. (in Chinese)
[77] 熊良宵, 李天斌, 杨林德. 隧道两种减震措施的数值模拟研究[J]. 水文地质工程地质, 2007(4):36-40. XIONG Liangxiao, LI Tianbin, YANG Linde. Numerical analysis of two-shock absorption measures of tunnel[J]. Hydrogeology & Engineering Geology, 2007(4):36-40. (in Chinese)
[78] 信春雷, 高波, 周佳媚, 等. 跨断层隧道设置常规抗减震措施振动台试验研究[J]. 岩石力学与工程学报, 2014, 33(10):2047-2055. XIN Chunlei, GAO Bo, ZHOU Jiamei, et al. Shaking table tests of conventional anti-seismic and damping measures on fault-crossing tunnels[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(10):2047-2055. (in Chinese)
[79] Toprak S, Nacarpglu E, Koc A C, et al. Pipeline damage predictions in liquefaction zones using LSN[C]//16th World Conference on Earthquake Engineering (16WCEE). Santiago, 2017.
[80] Suetomi I, Shinkai H, Inomata W, et al. Effect of post-liquefaction long shaking on roads and buried pipes during the 2011 Great East Japan Earthquake[C]//16th World Conference on Earthquake Engineering (16WCEE). Santiago, 2017.
[81] Miyajima M, Iwamoto N. Effects of tsunami on water supply network in case of the 2011 Tohoku Earthquake in Japan[C]//16th World Conference on Earthquake Engineering (16WCEE). Santiago, 2017.
[82] Zhong Z, Filiatrault A, Aref A. Seismic performance evaluation of buried pipelines retrofit with cured-in-place-pipe lining technology[C]//16th World Conference on Earthquake Engineering (16WCEE). Santiago,2017.
[83] Hachem H, Mazzoni S, Baune D, et al. Innovative retrofit of three large diameter landslide-crossing pipelines using earthquake resistant pipe[C]//16th World Conference on Earthquake Engineering (16WCEE). Santiago,2017.

相似文献/References:

[1]高玉峰,蒲黔辉,李晓斌.梁式桥地震碰撞响应及防碰撞与落梁措施研究进展[J].地震工程与工程振动,2011,(01):080.
 GAO Yufeng,PU Qianhui,LI Xiaobin.State-of-arts of earthquake-induced pounding responses of girder bridges and measures for preventing pounding and span collapse[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2011,(03):080.
[2]师黎静,陶夏新.地脉动方法最新研究进展[J].地震工程与工程振动,2007,(06):030.
 SHI Lijing,TAO Xiaxin.Latest advance in microtremor methods[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2007,(03):030.
[3]曹万林,张勇波,董宏英,等.再生混凝土结构抗震性能研究进展与评述[J].地震工程与工程振动,2013,04(06):063.
 CAO Wanlin,ZHANG Yongbo,DONG Hongying,et al.A review of mechanical properties and structural behavior of recycled concrete[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2013,04(03):063.
[4]刘红帅,薄景山,刘德东.岩土边坡地震稳定性分析研究评述[J].地震工程与工程振动,2005,(01):164.
 Liu Hongshuai,Bo Jingshan,Liu Dedong.Review on study of seismic stability analysis of rock-soil slopes[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2005,(03):164.
[5]陈学良,金星,陶夏新.土体动力一维非线性本构关系剖析与评价[J].地震工程与工程振动,2006,(06):147.
 Chen Xueliang,Jin Xing,Tao Xiaxin.Analysis and evaluation of one dimensional dynamic nonlinear constitutive relation of soil[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2006,(03):147.
[6]梁岩,罗小勇.耐久性损伤钢筋混凝土结构抗震性能研究进展[J].地震工程与工程振动,2014,01(02):113.[doi:10.13197/j.eeev.2014.02.113.liangy.015]
 LIANG Yan,LUO Xiaoyong.Research progress in seismic behavior of durability decrease RC structures[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2014,01(03):113.[doi:10.13197/j.eeev.2014.02.113.liangy.015]
[7]吕西林,全柳萌,蒋欢军.从16届世界地震工程大会看可恢复功能抗震结构研究趋势[J].地震工程与工程振动,2017,01(03):001.[doi:10.13197/j.eeev.2017.03.1.lüxl.001]
 Lü Xilin,QUAN Liumeng,JIANG Huanjun.Research trend of earthquake resilient structures seen from 16WCEE[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2017,01(03):001.[doi:10.13197/j.eeev.2017.03.1.lüxl.001]
[8]余世舟,慕安冬.浅谈地震损失评估方法研究[J].地震工程与工程振动,2017,01(03):144.[doi:10.13197/j.eeev.2017.03.144.yusz.016]
 YU Shizhou,MU Andong.Preliminary discussion on the earthquake loss assessment method[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2017,01(03):144.[doi:10.13197/j.eeev.2017.03.144.yusz.016]
[9]黄勇,张良,乐威杰,等.桥梁抗震研究的近期进展[J].地震工程与工程振动,2017,01(03):166.[doi:10.13197/j.eeev.2017.03.166.huangy.018]
 HUANG Yong,ZHANG Liang,LE Weijie,et al.Recent development of seismic research on bridge[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2017,01(03):166.[doi:10.13197/j.eeev.2017.03.166.huangy.018]

备注/Memo

备注/Memo:
收稿日期:2017-3-17;改回日期:2017-4-19。
基金项目:国家自然科学基金项目(51478222)
作者简介:李鸿晶(1966-),男,教授,博士,主要从事地震工程研究.E-mail:hjing@njtech.edu.cn
更新日期/Last Update: 1900-01-01