[1]马加路,张令心,陈永盛.从16WCEE会议看防屈曲支撑的未来发展趋势[J].地震工程与工程振动,2017,01(03):127-135.[doi:10.13197/j.eeev.2017.03.127.majl.014]
 MA Jialu,ZHANG Lingxin,CHEN Yongsheng.The future developing trends of buckling restrained braces from the 16WCEE[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2017,01(03):127-135.[doi:10.13197/j.eeev.2017.03.127.majl.014]
点击复制

从16WCEE会议看防屈曲支撑的未来发展趋势
分享到:

《地震工程与工程振动》[ISSN:/CN:]

卷:
01
期数:
2017年03期
页码:
127-135
栏目:
论文
出版日期:
2017-08-30

文章信息/Info

Title:
The future developing trends of buckling restrained braces from the 16WCEE
作者:
马加路 张令心 陈永盛
中国地震局工程力学研究所, 中国地震局地震工程与工程振动重点实验室, 黑龙江 哈尔滨 150080
Author(s):
MA Jialu ZHANG Lingxin CHEN Yongsheng
Key Laboratory of Earthquake Engineering and Engineering Vibration, Institute of Engineering Mechanics, China Earthquake Administration, Harbin 150080, China
关键词:
16WCEE防屈曲支撑耗能减震截面形式发展趋势
Keywords:
16WCEEbuckling restrained braceseismic energy dissipationcross-sectiondeveloping trend
分类号:
P315
DOI:
10.13197/j.eeev.2017.03.127.majl.014
摘要:
经历了几十年的发展,越来越多的新型防屈曲支撑相继涌现,正不断向着新型材料,新的结构形式,方便生产和施工,且具有更加优越的耗能特性等方向发展。本文对2017年在智利圣地亚哥召开的第16届世界地震工程大会(16WCEE)中防屈曲支撑相关研究工作进行了总结,阐述了传统防屈曲支撑在设计方面存在的问题,其中包括支撑约束段设计、焊接、连接形式、端板旋转和塑性铰出现位置等,介绍了基于非传统材料以及新截面形式的防屈曲支撑相关研究成果,这些成果多数是从构件性能的层面改进传统防屈曲支撑中所存在的种种问题,并通过16WCEE会议的相关研究总结了防屈曲支撑未来的发展趋势,为结构的耗能减震研究奠定了坚实的基础。
Abstract:
After several decades, more and more new types of buckling restrained braces came out one after another, and are developing with better performance of new materials, new cross-sections, easy to produce and construct, and better energy dissipation capacity. This paper summarized the research of buckling restrained braces in the 16th World Conference on Earthquake (16WCEE 2017) held in Santiago, Chile. Relative researches were reviewed, new research productions based on the new materials and new cross-sections, and existing problems were revealed. Finally, the developing trends were also pointed out, to provide reference for the study of the seismic energy dissipation on civil engineering.

参考文献/References:

[1] Wakabayashi M, Nakamura T. Experimental study on the elasto-plastic behavior of braces enclosed by precast concrete panels under horizontal cyclic loading (Part 1 and Part 2)[C]//Summaries of Technical Papers of Annual Meeting, Architectural Institute of Japan, 1973:10, 1041-1044(In Japanese).
[2] Kimura K, Yoshizaki K, TakedaT. Tests on braces encased by mortar in-filled steel tubes[C]//Summaries of Technical Papers of Annual Meeting, Architectural Institute of Japan, 1976:1041-1042.(in Japanese)
[3] Fujimoto M, Wada A, Saeki E. A study on the unbonded brace encased in buckling-restraining concrete and steel tube[J]. Journal of Structural and Construction Engineering, Architectural Institute of Japan, 1988, 34B:249-258.(in Japanese)
[4] Fujimoto M, Wada A, Saeki E., et al. A study on brace enclosed in buckling-restraining mortar and steel tube (Part 1)[C]//Summaries of Technical Papers of Annual Meeting, Architectural Institute of Japan, 1988, 10:1339-1340.(in Japanese)
[5] Fujimoto M, Wada A, Saeki E., et al. A study on brace enclosed in buckling-restraining mortar and steel tube (Part 2)[C]//Summaries of Technical Papers of Annual Meeting, Architectural Institute of Japan, 1988, 10:1341-1342.(in Japanese)
[6] Takeuchi T, Matsui R, et al. State-of-art stability assessment of buckling-restrained braces including connections[C]//16th World Conference on Earthquake Engineering(16WCEE 2017). Santiago, 2017, Paper No. 602.
[7] Sitler B, Macrae G, et al. Buckling restrained brace connection and stability performance issues[C]//16th World Conference on Earthquake Engineering(16WCEE 2017). Santiago, 2017, Paper No. 1380.
[8] Dehghani M, Tremblay R. Full-scale experimental assessment of steel-encased buckling restrained braces[C]//16th World Conference on Earthquake Engineering(16WCEE 2017). Santiago, 2017, Paper No. 2588.
[9] Jones A S, Lee C L, et al. Design and behavior of buckling restrained braces[C]//16th World Conference on Earthquake Engineering(16WCEE 2017). Santiago, 2017, Paper No. 1257.
[10] Escobedo F, EspinozaJ, et al. Experimental evaluation of a buckling restrained brace using a non-traditional material[C]//16th World Conference on Earthquake Engineering(16WCEE 2017). Santiago, 2017, Paper No. 1073.
[11] Morral M, Herrera R, et al. Numerical model for buckling restrained braces using an alternative confining material[C]//16th World Conference on Earthquake Engineering(16WCEE 2017). Santiago, 2017, Paper No. 3461.
[12] Xu W, Pantelides C P, et al. Hysteretic performance of new generation buckling restrained braces[C]//16th World Conference on Earthquake Engineering(16WCEE 2017). Santiago, 2017, Paper No. 1276.
[13] Wang C L, Zhou L, et al. Developing a new bamboo-shape buckling-restrained brace[C]//16th World Conference on Earthquake Engineering(16WCEE 2017). Santiago, 2017, Paper No. 4018.
[14] Chhabra J P S, Rai D C. Experimental evaluation of aluminum core buckling restrained knee braced truss moment frame under cyclic loads[C]//16th World Conference on Earthquake Engineering(16WCEE 2017).Santiago, 2017, Paper No. 4198.
[15] Westeneng B, Lee C L, et al. Out-of-plane buckling behaviour of brb gusset plate connections[C]//16th World Conference on Earthquake Engineering(16WCEE 2017). Santiago, 2017, Paper No. 1419.
[16] Zhao J, Lin F, et al. In-plane seismic frame action effects on buckling-restrained brace welded end connection performance[C]//16th World Conference on Earthquake Engineering(16WCEE 2017). Santiago, 2017, Paper No. 4775.
[17] Zaid A,Sadoon A, Palermo D, et al. Strengthening of deficient reinforced concrete buildings using a new type of buckling restrained brace[C]//16th World Conference on Earthquake Engineering(16WCEE 2017), Santiago, 2017, Paper No. 1930.
[18] Wei X, Bruneau M. Experimental performance of buckling restrained braces subjected to bidirectional displacement histories[C]//16th World Conference on Earthquake Engineering(16WCEE 2017). Santiago, 2017, Paper No. 819.
[19] Wang Y, Ibarra L, et al. Seismic assessment for retrofitted skewed reinforced concrete bridges with buckling restrained braces[C]//16th World Conference on Earthquake Engineering(16WCEE 2017). Santiago, 2017, Paper No. 2531.
[20] Brando G, Matteis G D. Buckling inhibited metal shear panels:a new damper based on the development of the brb concept in the 2d space[C]//16th World Conference on Earthquake Engineering(16WCEE 2017). Santiago, 2017, Paper No. 3069.

相似文献/References:

[1]赵俊贤,吴斌.防屈曲支撑的工作机理及稳定性设计方法[J].地震工程与工程振动,2009,(03):131.
 ZHAO Junxian,WU Bin.Working mechanism and stability design methods of buckling-restrained braces[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2009,(03):131.
[2]赵学斐,王曙光,杜东升.高烈度区采用防屈曲支撑的钢框架结构优化设计及抗震性能评估[J].地震工程与工程振动,2014,01(03):197.[doi:10.13197/j.eeev.2014.03.197.zhaoxf.026]
 ZHAO Xuefei,WANG Shuguang,DU Dongsheng.Optimal design and seismic performance evaluation of BRB for steel frame structure in areas with high seismic intensity[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2014,01(03):197.[doi:10.13197/j.eeev.2014.03.197.zhaoxf.026]
[3]赵俊贤,李伟,吴斌,等.内芯板件局部屈曲幅值对耗能型防屈曲支撑滞回性能的影响[J].地震工程与工程振动,2014,01(04):168.[doi:10.13197/j.eeev.2014.04.168.zhaojx.022]
 ZHAO Junxian,LI Wei,WU Bin,et al.Effect of local buckling amplitude of steel core members on the hysteretic behavior of buckling-restraining braces[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2014,01(03):168.[doi:10.13197/j.eeev.2014.04.168.zhaojx.022]
[4]陈云,陈奕柏,蒋欢军,等.自复位耗能支撑研究进展[J].地震工程与工程振动,2014,01(05):239.[doi:10.13197/j.eeev.2014.05.239.cheny.030]
 CHEN Yun,CHEN Yibo,JIANG Huanjun,et al.Research progress in self-centering energy dissipating braces[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2014,01(03):239.[doi:10.13197/j.eeev.2014.05.239.cheny.030]
[5]陶正如,陶夏新,纪林建.16WCEE地震动研究相关论文综述[J].地震工程与工程振动,2017,01(03):027.[doi:10.13197/j.eeev.2017.03.27.taozr.003]
 TAO Zhengru,TAO Xiaxin,JI Linjian.Summary of the 16WCEE papers on ground motion study[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2017,01(03):027.[doi:10.13197/j.eeev.2017.03.27.taozr.003]
[6]姜治军,胡进军,谢礼立.竖向地震动衰减模型新进展及其对四川地区预测能力分析[J].地震工程与工程振动,2017,01(03):067.[doi:10.13197/j.eeev.2017.03.67.jiangzj.007]
 JIANG Zhijun,HU Jinjun,XIE Lili.Advances in attenuation relationship for vertical ground motion and its applicability analysis to Sichuan region in China[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2017,01(03):067.[doi:10.13197/j.eeev.2017.03.67.jiangzj.007]
[7]牛亚运,金波.16WCEE非结构构件抗震热点研究综述[J].地震工程与工程振动,2017,01(03):093.[doi:10.13197/j.eeev.2017.03.93.niuyy.010]
 NIU Yayun,JIN Bo.A summary of hot seismic research on the nonstructural components of the 16WCEE[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2017,01(03):093.[doi:10.13197/j.eeev.2017.03.93.niuyy.010]

备注/Memo

备注/Memo:
收稿日期:2017-3-25;改回日期:2017-4-26。
基金项目:中国地震局工程力学研究所基本科研业务费专项(2017B11,2016B03);中国地震局创新团队发展计划资助项目
作者简介:马加路(1984-),男,助理研究员,博士,主要从事结构抗震研究.E-mail:jialuma@163.com
通讯作者:张令心(1967-),女,研究员,博士,主要从事结构抗震研究.E-mail:lingxin_zh@126.com
更新日期/Last Update: 1900-01-01