[1]梅雨辰,李鸿晶,孙广俊.基于微分求积原理的地震反应谱计算方法[J].地震工程与工程振动,2017,01(05):025-37.[doi:10.13197/j.eeev.2017.05.25.meiyc.003]
 MEI Yuchen,LI Hongjing,SUN Guangjun.A method of seismic response spectrum calculation by the differential quadrature rule[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2017,01(05):025-37.[doi:10.13197/j.eeev.2017.05.25.meiyc.003]
点击复制

基于微分求积原理的地震反应谱计算方法
分享到:

《地震工程与工程振动》[ISSN:/CN:]

卷:
01
期数:
2017年05期
页码:
025-37
栏目:
论文
出版日期:
2017-10-01

文章信息/Info

Title:
A method of seismic response spectrum calculation by the differential quadrature rule
作者:
梅雨辰 李鸿晶 孙广俊
南京工业大学 土木工程学院, 江苏 南京 211816
Author(s):
MEI Yuchen LI Hongjing SUN Guangjun
College of Civil Engineering, Nanjing Tech University, Nanjing 211816, China
关键词:
地震反应谱微分求积原理计算方法状态空间法Sylvester方程
Keywords:
seismic response spectrumdifferential quadrature rulecalculation methodstate space methodSylvester equation
分类号:
TU311.4
DOI:
10.13197/j.eeev.2017.05.25.meiyc.003
摘要:
将结构地震反应微分求积分析方法用于地震反应谱的计算,发展了一种具有较高精度和计算效率的计算地震反应谱的新方法。通过对3条不同卓越周期和频谱结构的地震地面加速度时程的反应谱的计算,阐释了该方法的可靠性和高效率,并分析了时步长度和节点数量等微分求积分析重要参数对计算结果的影响。研究表明,本文建立的基于状态分析的单自由度体系地震反应微分求积分析方法用于地震反应谱计算是可行的、合理的,对不同频谱结构的地震波都可以适用,且具有计算精度好、计算效率高、使用简便的特点,不失为一种计算地震反应谱的高效实用方法。
Abstract:
A new method calculating seismic response spectrum with high precision and efficiency is presented by applying differential quadrature (DQ) analysis procedure of structural seismic response to the calculation of the seismic response spectrum. Three acceleration histories of earthquake-induced ground motion with different predominant periods are selected for illustration of seismic response spectrum calculation by this DQ procedure, and the reliability and efficiency of the method are also checked out. In addition, the influences of important parameters including time step length and number of nodes on the calculation result are analyzed. The research indicates that this DQ-based seismic response analysis method for SDOF system in the state space is reasonable and feasible while it is employed for the calculation of seismic response spectrum. The method introduced in this paper can be used for the applied approach of calculation of seismic response spectrum owing to its good accuracy, high efficiency and convenient use.

参考文献/References:

[1] 胡聿贤. 地震工程学[M]. 2版, 北京:地震出版社, 2006:132-138. HU Yuxian. Earthquake engineering[M]. 2nd ed. Beijing:Seismological Press, 2006:132-138. (in Chinese)
[2] Clough R, Penzien J. Dynamics of structures[M]. 2nd ed. Computers and Structures, Inc. 2003:575-581.
[3] Trifunac M D. 70-th anniversary of Biot spectrum[J]. ISET Journal of Earthquake Technology, 2003, 40(1):19-50.
[4] Chopra A K. Elastic response spectrum:a historical note[J]. Earthquake Engineering and Structural Dynamics, 2007, 36:3-12.
[5] 李鸿晶, 王通, 廖旭. 关于Newmark-β法机理的一种解释[J]. 地震工程与工程振动, 2011, 31(2):55-62. LI Hongjing, WANG Tong, LIAO Xu. An interpretation on Newmark beta methods in mechanism of numerical analysis[J]. Earthquake Engineering and Engineering Dynamics, 2011, 31(2):55-62. (in Chinese)
[6] 温瑞智. 我国强地震动记录特征综述[J]. 地震学报, 2016, 38(4):550-563. WEN Ruizhi. A review on the characteristics of Chinese strong ground motion recordings[J]. Acta Seismological Sinica, 2016, 38(4):550-563. (in Chinese)
[7] Bellman R, Casti J. Differential quadrature and long-term integration[J]. J Math Anal Appl, 1971, 34:235-238.
[8] Bellman R, Kashef B G, Casti J. Differential quadrature:a technique for the rapid solution of nonlinear partial differential equations[J]. J. Comp Phys, 1972, 10:40-52.
[9] Bert C W, Malik M. Differential quadrature method in computational mechanics:A review[J]. Applied Mechanics Reviews, 1996, 49:1-28.
[10] Bert C W, Jang S K, Striz A G. Two new approximate methods for analyzing free vibration of structural components[J]. AIAA Journal, 1988, 26:612-618.
[11] Bert C W, Wang X, Striz A G. Differential quadrature for static and free vibration analysis of anisotropic plates[J]. Int. J. Solids Structures, 1993, 30:1737-1744.
[12] Sherbourne A N, Pandey M D. Differential quadrature method in the buckling analysis of beams and composite plates[J]. Computers & Structures, 1991, 40:903-913.
[13] Kang K, Bert C W, Striz A G. Vibration analysis of shear deformable circular arches by the differential quadrature method[J]. Journal of Sound and Vibration, 1995, 181:353-360.
[14] Liew K M, Han J B, Xiao Z M, et al. Differential quadrature method for Mindlin plates on Winkler foundations[J]. Int J. Mech Sci, 1996, 38:405-421.
[15] Fung T C. Solving initial problems by differential quadrature method——Part 1:first-order equations[J]. Int J. Numer Method Engng, 2001, 50:1411-1427.
[16] 李鸿晶, 王通. 结构地震反应分析的逐步微分积分方法[J]. 力学学报, 2011, 43(2):430-435. LI Hongjing, WANG Tong. A time-stepping method of seismic response analysis for structures using differential quadrature rule[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(2):430-435. (in Chinese)
[17] 李鸿晶, 廖旭, 王通. 结构地震反应DQ解法的两种数值格式[J]. 应用基础与工程科学学报, 2011, 19(5):758-766. LI Hongjing, LIAO Xu, WANG Tong. Two numerical schemes of differential quadrature analysis procedure for response of the earthquake-resistant structures[J]. Journal of Basic Science and Engineering, 2011, 19(5):758-766. (in Chinese)

备注/Memo

备注/Memo:
收稿日期:2016-12-20;改回日期:2017-04-15。
基金项目:国家自然科学基金项目(51478222);高等学校博士学科点专项科研基金项目(20123221110011)
作者简介:梅雨辰(1993-),男,硕士研究生,主要从事工程抗震研究.E-mail:1248020461@qq.com
通讯作者:李鸿晶(1966-),男,教授,博士,主要从事地震工程学研究.E-mail:hjing@njtech.edu.cn
更新日期/Last Update: 2017-10-25