[1]黄显彬,侯松,廖曼,等.承台高度变化对桥梁墩桩抗震性能的影响[J].地震工程与工程振动,2017,01(6):154-161.[doi:10.13197/j.eeev.2017.06.154.huangxb.017]
 HUANG Xianbin,HOU Song,LIAO Man,et al.Effects of pile caps height variety on seismic behavior of bridge pier piles[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2017,01(6):154-161.[doi:10.13197/j.eeev.2017.06.154.huangxb.017]
点击复制

承台高度变化对桥梁墩桩抗震性能的影响
分享到:

《地震工程与工程振动》[ISSN:/CN:]

卷:
01
期数:
2017年6
页码:
154-161
栏目:
论文
出版日期:
2017-12-31

文章信息/Info

Title:
Effects of pile caps height variety on seismic behavior of bridge pier piles
作者:
黄显彬12 侯松12 廖曼1 牟思佳1
1. 四川农业大学 土木工程学院, 四川 都江堰 611830;
2. 村镇建设防灾减灾 四川省高等学校 工程研究中心, 四川 都江堰 611830
Author(s):
HUANG Xianbin12 HOU Song12 LIAO Man1 MU Sijia1
1. College of Civil Engineering, Sichuan Agricultural University, Dujiangyan 611830, China;
2. Sichuan Higher Education Engineering Research Center for Disaster Prevention and Mitigation of Village Construction, Dujiangyan 611830, China
关键词:
高桩承台地震墩桩承载力
Keywords:
elevated pile capsearthquakepier pilebearing capacity
分类号:
P315;TU352
DOI:
10.13197/j.eeev.2017.06.154.huangxb.017
摘要:
以寿江大桥为研究对象,为研究承台高度变化对桥梁墩桩抗震性能的影响,采用规范公式计算和地震反应分析的方法,对寿江大桥在强震作用下的墩桩承载力进行分析。研究表明,原设计情况下,桥梁4、5#桥墩及其桩基在强震作用下承载力满足规范要求。变更设计承台提升14 m,设计基于现行规范地震烈度8度是满足要求的,但是4、5#桥墩对应的桩基在强震作用下(汶川地震重现的地震)都将发生受弯破坏,提出了桥梁设计相应抗震对策。对承台高度分别提升3 m、6 m、9 m、14 m进行桥梁墩桩地震反应分析,表明承台高度提升后桥梁抗震性能有所下降。研究为强震易发地区的高桩承台桥梁设计提供重要参考。
Abstract:
To investigate the effects of pile caps height variety on seismic behavior of bridge pier piles, this paper takes Shoujiang bridge as the research object. Here, based on the method of standard formula calculation and seismic response analysis, we analyzed the pier pile bearing capacity of the Shoujiang bridge under strong earthquake conditions. The study shows that in the original design, the bearing capacity of #4, #5 bridge piers and their pile foundations under strong earthquake conditions meet the standard requirements. After changing the design,the pile caps were hoisted by 14 m compared with the orignal location, new design based on the seismic fortification intensity of eight degrees meet the current specification requirement, but the pile foundations of #4 and #5 are exposed to occur bending failure under strong earthquake conditions (even in the earthquake of wenchuan earthquake recurrence). Therefore, we proposed the corresponding seismic countermeasures specifically for this situation. With the height of pile caps were increased by 3 m, 6 m, 9 m, 14 m respectively, seismic response analysis of bridge pier pile were conducted. The results indicated that the seismic behavior of the bridge will decline after the ascension of pile caps. The research achievement provide an important reference for the design of elevated pile cap bridge in strong earthquake prone areas.

参考文献/References:

[1] 杨浩林,陈卫伟,袁万城.分离式高桩基础承台抗震性能分析[J].结构工程师,2013,29(4):89-94. YANG Haolin, CHEN Weiwei, YUAN Wancheng. Seismic analysis of a separated pile-cap foundation[J]. Structural Engineers, 2013, 29(4):89-94.(in Chinese)
[2] 黄勇,李瑞,朱文骏.汶川地震中小半径曲线连续梁桥震害机理分析[J].地震工程与工程震动,2014(34):383-388. HUANG Yong, LI Rui, ZHU Wenjun. Analysis of damage mechanism of small radius curve continuous beam bridges duing the Wenchuan Earthquake[J]. EarthquakeEngineering and Engineering Dynamics, 2014(34):383-388.(in Chinese)
[3] 张晨南.推倒分析方法在高架桥梁系统抗震分析中的应用[D]. 上海:同济大学,2003. ZHANG Chennan. Aplication of pushover method on seismic analysis of viaducts[D]. Shanghai:Tongji University, 2003.(in Chinese)
[4] 张永亮,陈兴冲,丁明波.黄土地基-群桩基础-桥墩滞回特性模型试验研究[J].兰州交通大学学报,2007,26(1):93-96. ZHANG Yongliang, CHEN Xinchong, DING Mingbo. Study on model test of loess subgrade-pile group-pier for hysteretic property[J]. Journal of Lanzhou Jiaotong University, 2007, 26(1):93-96.(in Chinese)
[5] 韩振峰,叶爱君.桥梁高桩承台基础抗震性能研究[J].合肥工业大学学报,2016,39(2):199-204. HAN Zhenfeng, YE Aijun. Study of earthquake-resistant performance of high pile cap foundation of bridge[J]. Journal of Hefei University of Technology(Natural Science), 2016, 39(2):199-204.(in Chinese)
[6] 王晓伟,赫中营,叶爱君.桥梁高桩承台基础地震破坏机理试验研究[J].同济大学学报,2014,42(9):1313-1320. WANG Xiaowei, HE Zhongying, YE Aijun. Experimental study on seismic failure mechanism of elevated pile-cap foundation for bridge structures[J]. Journal of Tongji university, 2014, 42(9):1313-1320.(in Chinese)
[7] 高智能,卓卫东,谷音.考虑非一致地震输入的地铁车站动力时程分析[J].地震工程与工程震动,2016,36(6):56-63. GAO Zhineng, ZHUO Weidong, GU Yin.namic time-history analysis of subway station considering non-uniform seismic input[J]. Earthquake Engineering and Engineering Dynamics, 2016, 36(6):56-63.(in Chinese)
[8] JTG D62-2012公路钢筋混凝土及预应力混凝土桥涵设计规范[S]. 北京:人民交通出版社,2012. JTG D62-2012 Code for Design of Highway Reinforced Concrete and Prestressed Concrete Bridges and Culverts[S]. Beijing:China Communications Press, 2012.(in Chinese)
[9] JGJ94-2008建筑桩基技术规范[S].北京:中国建筑工业出版社,2008. JGJ94-2008 Technical Code for Building Pile Foundations[S]. Beijing:China Architecture and Building Press,2011.(in Chinese)
[10] GB50010-2010混凝土结构设计规范[S].北京:中国建筑工业出版社,2010. GB50010-2010 Code for Design of Concrete Structures[S]. Beijing:China Architecture and Building Press, 2010.(in Chinese)

相似文献/References:

[1]陈春光,杨庆华,孔杰,等.铸铁管道胶圈承插接口抗震性能试验研究[J].地震工程与工程振动,2012,(03):104.
 CHEN Chunguang,YANG Qinghua,KONG Jie,et al.Experimental research on seismic capability of cast-iron pipe with rubber gasket joints[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2012,(6):104.
[2]吴文朋,李立峰,王连华,等.基于IDA的高墩大跨桥梁地震易损性分析[J].地震工程与工程振动,2012,(03):117.
 WU Wenpeng,LI Lifeng,WANG Lianhua,et al.Evaluation of seismic vulnerability of high-pier long-span bridge using incremental dynamic analysis[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2012,(6):117.
[3]杨万理,李乔.墩-水耦合计算模式及深水桥墩动力响应研究[J].地震工程与工程振动,2012,(03):130.
 YANG Wanli,LI Qiao.Study on pier-water interaction calculation method and dynamic response of submerged piers[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2012,(6):130.
[4]张令心,孙柏涛,刘洁平,等.建(构)筑物地震破坏等级划分标准有关问题研究[J].地震工程与工程振动,2010,(02):039.
 ZHANG Lingxin,SUN Baitao,LIU Jieping,et al.Study on relevant problems of standard in classification of earthquake damage to buildings and special structures[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2010,(6):039.
[5]郑颖人,叶海林,黄润秋,等.边坡地震稳定性分析探讨[J].地震工程与工程振动,2010,(02):173.
 ZHENG Yingren,YE Hailin,HUANG Runqiu,et al.Study on the seismic stability analysis of a slope[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2010,(6):173.
[6]王根龙,林玮,蔡晓光.基于Finn本构模型的饱和砂土地震液化分析[J].地震工程与工程振动,2010,(03):178.
 WANG Genlong,LIN Wei,CAI Xiaoguang.Seismic liquefaction analysis of saturated sand soil based on Finn constitutive model[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2010,(6):178.
[7]王开云,王少林,杨久川,等.地震环境下铁路轮轨动态安全性能及脱轨研究进展[J].地震工程与工程振动,2012,(06):082.
 WANG Kaiyun,WANG Shaolin,YANG Jiuchuan,et al.Progress in study on wheel/rail dynamic safety and derailment of railway during an earthquake[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2012,(6):082.
[8]李立峰,刘本永,张晨熙,等.中等跨径斜拉桥塔梁弹性约束装置的减震效应研究[J].地震工程与工程振动,2013,04(01):146.
 LI Lifeng,LIU Benyong,ZHANG Chenxi,et al.Research on the seismic performance of mid-span cable-stayed bridges with elastic constraints between tower and beam[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2013,04(6):146.
[9]李桂荣,郭恩栋,杨克勇.西安阎良供水系统地震功能失效状态分析[J].地震工程与工程振动,2007,(06):130.
 LI Guirong,GUO Endong,YANG Keyong.Seismic performance analysis of Yanliang water supply system in Xi’an City[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2007,(6):130.
[10]郭安薪,崔丽丽,李惠.地震作用下公路桥梁碰撞的半主动控制研究[J].地震工程与工程振动,2008,(02):147.
 GUO Anxin,CUI Lili,LI Hui.Study on semi-active control of highway bridge pounding under seismic excitations[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2008,(6):147.

备注/Memo

备注/Memo:
收稿日期:2017-03-14;改回日期:2017-06-02。
基金项目:村镇建设防灾减灾四川省高等学校工程研究中心资助项目(CDPMV1403);国家自然科学基金面上项目(4167020785)
作者简介:黄显彬(1965-),男,副教授,主要从事公路、桥梁和隧道工程的科研和教学工作.E-mail:hxianbin@sicau.edu.cn
更新日期/Last Update: 1900-01-01