[1]何俊彪,陆鸣,廖云.基于地震危险性分析方法美国某高层建筑优化设计研究[J].地震工程与工程振动,2017,01(6):177-183.[doi:10.13197/j.eeev.2017.06.177.hejb.020]
 HE Junbiao,LU Ming,LIAO Yun.Research on site-specific seismic hazard analysis of a high-rise building in downtown Seattle, USA[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2017,01(6):177-183.[doi:10.13197/j.eeev.2017.06.177.hejb.020]
点击复制

基于地震危险性分析方法美国某高层建筑优化设计研究
分享到:

《地震工程与工程振动》[ISSN:/CN:]

卷:
01
期数:
2017年6
页码:
177-183
栏目:
论文
出版日期:
2017-12-31

文章信息/Info

Title:
Research on site-specific seismic hazard analysis of a high-rise building in downtown Seattle, USA
作者:
何俊彪1 陆鸣2 廖云3
1. 中国港湾工程有限责任公司, 北京 100027;
2. 中国地震局 地壳应力研究所, 北京 100085;
3. 中国港湾工程有限责任公司, 美国 94582
Author(s):
HE Junbiao1 LU Ming2 LIAO Yun3
1. ChinaHarbour Engineering Company Ltd, Beijing 100027, China;
2. the Institute of Crustal Dynamics, China Earthquake Administration, Beijing 100085, China;
3. China Harbour Engineering Company Ltd, USA 94582
关键词:
地震危险性分析卡斯卡迪亚俯冲带高层建筑盆地地震动放大效应风险系数最大方向系数
Keywords:
seismic hazard analysiscascadia subduction zonehigh-rise buildingbasin amplification factorrisk coefficientmaximum direction factor
分类号:
P694
DOI:
10.13197/j.eeev.2017.06.177.hejb.020
摘要:
本文采用近年来美国地震灾害研究取得的最新进展,对美国西雅图市中心某拟建高层建筑地震危险性分析展开优化研究,以期达到在满足美国土木工程师协会抗震设计规范(ASCE 7-10)的前提下,合理降低建筑物抗震设计费用之目的。研究首先采用ASCE 7-10推荐的方法2分析基于具体场地参数条件下的风险系数;对于地震动最大方向系数,采用最新的Shashi and Baker 2014模型进行优化;由于现有的卡斯卡迪亚俯冲带地震动衰减模型缺乏对盆地放大效应的考虑,研究采用基于2014 NGA West2的最新潜源地震动衰减模型盆地放大效应系数进行优化考虑。研究结果显示,优化后的地震反应谱在中短周期范围内与非优化的地震反应谱基本一致,但是在长周期范围内,进行优化后的反应谱值一般要比不优化的反应谱值小20%到30%。在建筑物的第一卓越周期7秒左右,这个差别是25%。可见采用优化后的地震反应谱将会达到安全合理节约建筑物抗震设计费用的目的。
Abstract:
The purpose of this study is to achieve an optimal design of the proposed high-rise building in Downtown Seattle with meeting satisfactory seismic safety design per the ASCE 7-10 code as well as saving related costs. Risk factors were computed using the Method 2 recommended by the ASCE 7-10; the latest Shashi and Baker 2014 model was used to calculate period-dependent maximum direction factors; the current ground motion attenuation models for the Cascadia Subduction Zone do not include effects of the basin amplification. As such, basin amplification factors derived from the NGA West2 ground motion attenuation models for the shallow crustal faults were adopted to consider basin amplification effects for ground motions. The result of the study revealed that the optimized response spectrum is in general in agreement with the non-optimized response spectrum for short and intermediate periods. However, the optimized response spectrum is about 20% to 30% less than the non-optimized response spectrum for long periods. In particular, the optimized response spectrum is about 25% less for the periods of around 7 second which is the fundamental period of the proposed building.

参考文献/References:

[1] Pacific Northwest Seismic Network. https://pnsn.org/outreach/earthquakesources/csz.
[2] Geomatrix Consultants. Seismic design mapping, state of Oregon, unpublished report prepared for the Oregon Department of Transportation, Project No. 2442, 1995.
[3] Emre B, Davie J. Suspension P-S logging for geophysical investigation of deep soil and bedrock, GeoFlorida, Orlando, Florida, United States, 2010.
[4] Petersen M D, Frankel AD, Harmsen S C, et al. Documentation for the 2008 update of the United States national seismic hazard maps[R]. U.S. Geological Survey Open-File Report 2008-1128, 61 p, 2008.
[5] Abrahamson N A, Silva W J, Kamai R. Summary of the ASK14 ground motion relation for active crustal regions[J]. Earthquake Spectra, 2014, 30(3):1025-1055.
[6] BooreF M, Stewart J P, Seyhan E, et al. NGA-West2 equations for predicting PGA, PGV, and 5% damped PSA for shallow crustal earthquakes[J]. Earthquake Spectra, 2014, 30(3):1057-1085.
[7] Campbell K W, Bozorgnia Y. NGA-West2 ground motion model for the average horizontal components of PGA, PGV, and 5% damped linear acceleration response spectra[J]. Earthquake Spectra, 2014, 30(3):1087-1115.
[8] Chiou B S, Youngs R R. Update of the Chiou and Youngs NGA model for the average horizontal component of peak ground motion and response spectra[J]. Earthquake Spectra, 2014, 30(3):1117-1153.
[9] Peterson M D, Moschetti M P, Powers P M, et al. Documentation for the 2014 update of the United States national seismic hazard maps[R]. U.S. Geological Survey Open-File Report 2014-1091, 2014, 243 p.
[10] Atkinson G M, Macias M. Predicted ground motions for great interface earthquakes in the Cascadia Subduction Zone[J]. Bulletin of the Seismological Society of America, 2009, 99(3):1552-1578.
[11] Atkinson G M,Boore D M. Empirical ground-motion relations for Subduction-Zone earthquakes and their application to Cascadia and other regions[J]. Bulletin of the Seismological Society of America, 2003, 93(4):1703-1729.
[12] Zhao J X, Zhang J, Asano A, et al. Attenuation relations of strong ground motion in Japan using site classification based on predominant period[J]. Bulletin of the Seismological Society of America, 2006, 96(3):898-913.
[13] Addo K, Abrahamson N A, Youngs R. (BC Hydro) Probabilistic seismic hazard analysis (PSHA) model-ground motion characterization (GMC) model[R]. Report E658, 2012, published by BC Hydro.
[14] Shrey K S, Baker J W. NGA-West2 models for ground motion directionality[J]. Earthquake Spectra, 2014,30(3):1285-1300.
[15] Jayaram N, Baker J W. Correlation model for spatially distributed ground-motion intensities[J]. Earthquake Engng. Struct. Dyn., 2009, 38(15):1687-1708.
[16] Motosaka M, Somer A. Ground motion directionality inferred from a survey of minaret damage during the 1999 Kocaeli and Düzce, Turkey earthquakes[J]. Journal of Seismology, 20026(3):419-430.
[17] Pratt T L, Brocher T M, Weaver C S, et al.Amplification of seismic waves by the Seattle basin, Washington State[J]. Bulletin of the Seismological Society of America, 2003, 93(2):533-545.
[18] Frankel A, Stephenson W, Carver D. Sedimentary basin effects in Seattle, Washington:ground-motion observations and 3D simulations[J]. Bulletin of the Seismological Society of America,2009, 99(3):1579-1611.
[19] Molnara S, Cassidyb J F, Olsenc K B, et al. Earthquake ground motion and 3D Georgia basin amplification in Southwest British Columbia:deep Juan de Fuca plate scenario earthquakes[J]. Bulletin of the Seismological Society of America,2014, 104(1):301-320.
[20] Thompson M, Frankel A D, Wirth E A, et al. Sedimentary basins:adeeper look at Seattle and Portland’s earthquake hazards[C]//American Geophysical Union, Fall Meeting 2015.
[21] Stephenson W J. Velocity and density models incorporating the Cascadia Subduction Zone for 3D earthquake ground motion attenuation simulations[R]. US Geological Survey Open-File Report, 2007-1348, 24 p.
[22] Snelson C M, Brocher T M, Miller K C, et al. Seismic amplification within the Seattle basin, Washington State:insights from SHIPS seismic tomography experiment[J]. Bulletin of the Seismological Society of America,2007, 97(5):1432-1448.
[23] Brocher T M, Parsons T, Blakely R J, et al. Upper crustal structure in Puget Lowland, Washington:results from the 1998 seismic hazards investigation in Puget Sound[J]. Journal of Geophysical Research, 2001, 106(B7):13541-13564.

备注/Memo

备注/Memo:
收稿日期:2017-04-17;改回日期:2017-06-10。
作者简介:何俊彪(1969-),男,高级工程师,主要从事国际土木工程的设计与施工管理.E-mail:jbhe@chec.bj.cn
更新日期/Last Update: 1900-01-01