[1]李宁,史伟,谢礼立.考虑修/改造方案优选的桥梁震后可恢复性和可持续性研究[J].地震工程与工程振动,2018,(01):001-9.[doi:10.13197/j.eeev.2018.01.1.lin.001]
 LI Ning,SHI Wei,XIE Lili.Research on post-earthquake resilience and sustainability performance of bridge considering bridge retrofit schemes[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2018,(01):001-9.[doi:10.13197/j.eeev.2018.01.1.lin.001]
点击复制

考虑修/改造方案优选的桥梁震后可恢复性和可持续性研究
分享到:

《地震工程与工程振动》[ISSN:/CN:]

卷:
期数:
2018年01期
页码:
001-9
栏目:
论文
出版日期:
2018-06-30

文章信息/Info

Title:
Research on post-earthquake resilience and sustainability performance of bridge considering bridge retrofit schemes
作者:
李宁12 史伟1 谢礼立3
1. 天津大学 建筑工程学院, 天津 300072;
2. 滨海土木工程结构与安全教育部重点实验室, 天津 300072;
3. 中国地震局 工程力学研究所, 黑龙江 哈尔滨 150080
Author(s):
LI Ning12 SHI Wei1 XIE Lili3
1. School of Civil Engineering, Tianjin University, Tianjin 300072, China;
2. Key Laboratory of Coast Civil Engineering Structures Safety, Ministry of Education, Tianjin 300072, China;
3. Institute of Engineering Mechanic, China Earthquake Administration, Harbin 150080, China
关键词:
桥梁抗震可持续性可恢复性社会成本环境成本
Keywords:
seismic resistant of bridgesustainabilityresilience performancesocial costenvironmental cost
分类号:
TU352.1+1;TU997
DOI:
10.13197/j.eeev.2018.01.1.lin.001
摘要:
为了实现基于性能的桥梁结构全寿命设计,针对某桥梁修/改造方案案例,提出了桥梁震后可恢复性和可持续性的评估方法框架。针对2种备选的桥梁修/改造方案,建立考虑时效的时变易损性曲线,通过计算桥梁不同损伤状态的超越概率和震后恢复时间,实现对桥梁震后可恢复性能的评估。基于不同地震动强度的震后恢复时间计算社会成本、环境成本和修复成本,考虑模型参数不确定性,使用蒙特卡洛模拟对社会、环境和经济指标进行定量分析,实现对桥梁震后可持续性的评估。结果表明:不同的备选修/改造方案震后可恢复性能差异较大,提出的评估计算方法为修/改造方案优选提供了理论支撑;并且根据经济、社会、环境影响因素,由可持续性三个指标导出的成本差异,可更好地优选修/改造方案。
Abstract:
In order to achieve performance-based life cycle design of bridge structure, this paper puts forward a framework for evaluating the post-earthquake resilience and sustainability of bridges based on different reconstruction/maintenance choices. Considering the aging effect of the bridge structure, the time-varying fragility curve of bridge reconstruction/maintenance schemes are built. The probability of different damage states and the post-earthquake recovery time of bridge are calculated as an indicator for resilience assessment. Based on the post-earthquake recovery time of different seismic peak ground acceleration and considering the uncertainty of model parameters, the social cost, environmental cost and repairing cost are calculated using Monte Carlo simulation to evaluate the sustainability of the bridge after a designed earthquake. The results show that the differences of post-earthquake resilience of different reconstruction/maintenance choices is obviously. The proposed evaluation method provides a theoretical support for the repair/renovation scheme optimization; and the differences between the indicators can be used to make the decision for suggestion of construction/maintenance scheme, furthermore, explained how to assess the post-earthquake resilience and sustainability performance of the bridge.

参考文献/References:

[1] 张喜刚,刘高,马军海,等.中国桥梁技术的现状与展望[J]. 科学通报, 2016(Z1):415-425. ZHANG Xigang, LIU Gao, MA Junhai, et al. Status and prospect of technical development for bridges in China[J]. China Science Bulletin, 2016(Z1):415-425.(in Chinese)
[2] 李忠献,李杨,李宁.RC桥墩抗震性能分析模型与验证[J]. 地震工程与工程振动, 2014, 34(1):71-80. LI Zhongxian, LI Yang, LI Nin. Seismic anslysis model of RC bridge piers:simulation and verification[J]. Earthquake Engineering and Engineering Dynamics, 2014, 34(1):71-80. (in Chinese)
[3] Bocchini P, Frangopol D M, Ummenhofer T, et al. Resilience and sustainability of civil infrastructure:toward a unified approach[J]. Journal of Infrastructure Systems, 2013, 20(2):04014004.
[4] Lounis Z, Mcallister T P. Risk-based decision making for sustainable and resilient infrastructure systems[J]. Journal of Structural Engineering, 2016, 142(9):F4016005.
[5] 乔建刚, 侯会学. 基于全寿命周期成本的桥梁改造方案优选的研究[J]. 中外公路, 2014, 34(5):93-95. QIAN Jiangang, HOU Huixue. Optimization of bridge reconstruction scheme based on the life-cycle cost[J]. Journal of China & Foreign Highway, 2014, 34(5):93-95. (in Chinese)
[6] 许圣. 钢筋混凝土公路连续梁桥地震风险与抗震可恢复性分析[D]. 哈尔滨:哈尔滨工业大学, 2015. XU Sheng. Seismic risk and resilience analysis of RC continuous-girder highway bridges[D]. Harbin:Harbin Institute of Technology, 2015. (in Chinese)
[7] Dong Y, Frangopol D M, Saydam D. Time-variant sustainability assessment of seismically vulnerable bridges subjected to multiple hazards[J]. Earthquake Engineering & Structural Dynamics, 2013, 42(10):1451-1467.
[8] Nielson B G, DesRoches R. Analytical seismic fragility curves for typical bridges in the central and southeastern united states[J]. Earthquake Spectra, 2007, 23(3):615-633.
[9] Padgett J E, Dennemann K, Ghosh J. Risk-based seismic life-cycle cost-benefit (LCC-B) analysis for bridge retrofit assessment[J]. Structural Safety, 2010, 32(3):165-173.
[10] Decò A, Dan M F. Life-cycle risk assessment of spatially distributed aging bridges under seismic and traffic hazards[J]. Earthquake Spectra, 2013, 29(1):127-153.
[11] Ghosh J, Padgett J E. Aging considerations in the development of time-dependent seismic fragility curves[J]. Jounal of Structural Engineering, 2010, 136(12):1497-1511.
[12] Padgett J E, Ghosh J, Dennemann K. Sustainable infrastructure subjected to multiple threats[C]//Technical Council on Lifeline Earthquake Engineering Conference. 2009:1-11.
[13] Padgett J E. Seismic vulnerability assessment of retrofitted bridges using probabilistic methods[D]. Georgia Institute of Technology, 2007.
[14] Frangopol D M, Soliman M. Life-cycle of structural systems:recent achievements and future directions[J]. Structure & Infrastructure Engineering, 2015, 12(1):1-20.
[15] Shiraki N, Shinozuka M, Moore Ⅱ J E, et al. System risk curves:Probabilistic performance scenarios for highway networks subject to earthquake damage[J]. Journal of Infrastructure Systems, 2007, 13:1(43):43-54.
[16] Soliman M, Frangopol D M. Life-cycle cost evaluation of conventional and corrosion-resistant steel for bridges[J]. Journal of Bridge Engineering, 2015, 20(1):06014005.
[17] Stein S M, Young G K, Trent R E, et al. Prioritizing scour vulnerable bridges using risk[J]. Journal of Infrastructure Systems, 1999, 5(3):95-101.
[18] Kendall A, Keoleian G A, Helfand G E. Integrated life-cycle assessment and life-cycle cost analysis model for concrete bridge deck applications[J]. Journal of Infrastructure Systems, 2008, 14(3):214-222.
[19] Mander J B. Fragility curve development for assessing the seismic vulnerability of highway bridges[R]. Research Progress and Accomplishments,1997-1999.University at Buffalo,The State University of New York:MCEER 99-SP01,1999.
[20] Alberto Decò, Dan M. Frangopol. Risk assessment of highway bridges under multiple hazards[J]. Journal of Risk Research, 2011, 14(9):1057-1089.
[21] 胡江碧, 刘妍, 高玲玲. 桥梁全寿命周期费用折现率分析[J]. 公路, 2008(9):363-367. HU Jiangbi, LIU Yan, GAO Lingling. Analysis of discount rate of bridge life-cycle cost[J].Highway, 2008(9):363-367. (in Chinese)
[22] 张秦. 建筑工程全寿命周期成本分析中折现率取值研究[D]. 北京:清华大学, 2014. ZHANG Qin. Research on discount rate in life-cycle cost analysis of construction project[D]. Beijing:Tsinghua University, 2014. (in Chinese)
[23] ThoftChristensen P. Life-cycle cost-benefit (LCCB) analysis of bridges from a user and social point of view[J]. Structure & Infrastructure Engineering, 2009, 5(5):49-57.

相似文献/References:

[1]李鹏,段启伟.基于复阻尼模型的连续刚构桥地震响应分析[J].地震工程与工程振动,2013,04(04):095.
 LI Peng,DUAN Qiwei.Analysis of seismic responses of continuous rigid-framed bridge based on complex damping[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2013,04(01):095.
[2]陈之健,赵建锋,朱俊,等.LRB支座选取及其对连续梁桥减隔震效果的影响[J].地震工程与工程振动,2015,01(05):085.[doi:10.13197/j.eeev.2015.05.85.chenzj.013]
 CHEN Zhijian,ZHAO Jianfeng,ZHU Jun,et al.Selection of LRB and its effect on continuous girder bridge seismic isolation[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2015,01(01):085.[doi:10.13197/j.eeev.2015.05.85.chenzj.013]
[3]黄勇,张良,乐威杰,等.桥梁抗震研究的近期进展[J].地震工程与工程振动,2017,01(03):166.[doi:10.13197/j.eeev.2017.03.166.huangy.018]
 HUANG Yong,ZHANG Liang,LE Weijie,et al.Recent development of seismic research on bridge[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2017,01(01):166.[doi:10.13197/j.eeev.2017.03.166.huangy.018]

备注/Memo

备注/Memo:
收稿日期:2017-03-07;改回日期:2017-06-10。
基金项目:国家自然科学基金项目(51378341,51678407,51427901);国家重点研发计划(2016YFC0701108)
作者简介:李宁(1981-),男,教授,博士,主要从事工程结构抗震研究.E-mail:neallee@tju.edu.cn
更新日期/Last Update: 1900-01-01