[1]邓明科,潘姣姣.基于双参数损伤阈值的高延性混凝土损伤本构模型研究[J].地震工程与工程振动,2018,(01):089-96.[doi:10.13197/j.eeev.2018.01.89.dengmk.010]
 DENG Mingke,PAN Jiaojiao.Damage constitutive model of high ductile concrete based on the double-parameter damage threshold[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2018,(01):089-96.[doi:10.13197/j.eeev.2018.01.89.dengmk.010]
点击复制

基于双参数损伤阈值的高延性混凝土损伤本构模型研究
分享到:

《地震工程与工程振动》[ISSN:/CN:]

卷:
期数:
2018年01期
页码:
089-96
栏目:
论文
出版日期:
2018-06-30

文章信息/Info

Title:
Damage constitutive model of high ductile concrete based on the double-parameter damage threshold
作者:
邓明科 潘姣姣
西安建筑科技大学 土木工程学院, 陕西 西安 710055
Author(s):
DENG Mingke PAN Jiaojiao
School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
关键词:
高延性混凝土纤维桥联损伤阈值损伤本构模型威布尔分布
Keywords:
high ductile concrete (HDC)fiber bridgingdamage thresholddamage constitutive modelthe Weibull theory
分类号:
TU375
DOI:
10.13197/j.eeev.2018.01.89.dengmk.010
摘要:
通过9组不同配合比高延性混凝土试件的单轴受压试验,研究了纤维桥联应力的约束作用对高延性混凝土试件单轴受压破坏形态的影响。根据高延性混凝土单轴受压应力-应变曲线的形状和特点,引入两个损伤阈值参数γβ,建立了基于双参数损伤阈值的高延性混凝土单轴受压损伤本构模型。试验结果表明:高延性混凝土单轴受压损伤本构模型的初始损伤阈值γ远高于普通混凝土和钢纤维混凝土;达到峰值应变时,高延性混凝土的损伤值D远小于钢纤维混凝土的;纤维桥联应力的横向约束作用,显著提高了高延性混凝土单轴受压的耐损伤能力。本文建立的模型曲线与试验曲线吻合良好,能较好地描述纤维桥联作用的影响以及高延性混凝土单轴受压应力状态下的损伤发展过程。
Abstract:
Based on the uniaxial compressive test of 9 groups of high ductile concrete (HDC) specimens with different mixture ratios, the lateral restraint effect of fiber bridging stress on the failure mode was studied. According to the shapes and features of uniaxial compressive stress-strain curves of HDC, a damage constitutive model of HDC was proposed by introducing two damage threshold parameters,γ and β. The test results show that the initial damage threshold γ of the proposed model is far higher than that of normal concrete and steel fiber reinforced concrete. The damage variable D of HDC is much smaller than that of steel fiber reinforced concrete when the strain comes to the peak strain. The lateral restraint effect of fiber bridging stress significantly improves the damage resistance ability of HDC under uniaxial compression. The model curves of HDC proposed in this paper are in good agreement with those from experiments and can describe the effect of fiber bridging stress as well as the damage development progress of HDC under uniaxial compression.

参考文献/References:

[1] Li V C, Leung C K Y. Steady state and multiple cracking of short random fiber composites[J]. Journal of Engineering Mechanics, ASCE, 1992, 188(11):2246-2264.
[2] Li V C. ECC-tailored composites through micromechanical modeling[C]//Fiber Reinforced Concrete:Present and the Future. Montreal:Canadian society of Civil Engineering, 1998:64-97.
[3] Li V C. On engineered cementitious composites (ECC):a review of the material and its applications[J]. Journal of Advanced Concrete Technology, 2003, 1(3):215——230.
[4] Li V C, Wang S, Wu C. Tensile strain-hardening behavior of PVA-ECC[J]. ACI Materials Journal,2001,98(6):483-492.
[5] 邓明科,孙宏哲,梁兴文,等. 延性纤维混凝土抗弯性能的试验研究[J]. 工业建筑, 2014, 44(5):85-90. DENG Mingke, SUN Hongzhe, LIANG Xingwen, et al. Experimental study of flexural behavior of high ductile concrete[J]. Industrial Construction, 2014, 44(5):85-90. (in Chinese)
[6] 邓明科,孙宏哲,梁兴文,等. 延性纤维混凝土抗压与抗弯性能研究[J]. 工业建筑, 2014, 44(10):115-121. DENG Mingke, SUN Hongzhe, LIANG Xingwen, et al. Experimental study of compressive behavior and flexural behavior of high ductile concrete[J]. Industrial Construction, 2014, 44(10):115-121. (in Chinese)
[7] 邓明科,秦萌,梁兴文. 高延性混凝土抗压性能试验研究[J]. 工业建筑, 2015, 45(4):120-126. DENG Mingke, QIN Meng, LIANG Xingwen. Experimental study of compressive behavior of engineered cementitious composities[J]. Industrial Construction, 2015, 45(4):120-126. (in Chinese)
[8] 寇佳亮,邓明科,梁兴文. 延性纤维增强混凝土单轴拉伸性能试验研究[J]. 建筑结构, 2013, 43(1):59-64. KOU Jialiang, DENG Mingke, LIANG Xingwen. Experimental study of uniaxial tensile properties of high ductile concrete[J]. Building Structure, 2013, 43(1):59-64. (in Chinese)
[9] MAZARS J, LEMAITRE J. Application of continuous damage mechanics to strain and fracture behavior of concrete[M]. Evanston, USA:Springer, 1984:375-378.
[10] LOLAND K E. Continuous damage model for load-response estimation of concrete[J]. Cement and Concrete Research, 1980, 10(3):395-402.
[11] KRAJCINOVIC D. Constitutive equations for damaging materials[J]. Journal of Applied Mechanics, 1983, 50(2):355-360.
[12] 董毓利,谢和平,李世平. 混凝土受压损伤力学本构模型的研究[J]. 工程力学, 1996, 13(1):44-53. DONG Yuli, XIE Heping, LI Shingping. Continuum damage mechanics constitutive model of concrete under compression[J]. Engineering Mechanics, 1996, 13(1):44-53.(in Chinese)
[13] 王春来,徐必根,李庶林,等. 单轴受压条件下钢纤维混凝土损伤本构模型研究[J]. 岩土力学, 2006, 27(1):151-154. WANG Chunlai, XU Bigen, LI Shulin, et al. Study on a constitutive model of damage of SFRC under uniaxial compression[J]. Rock and Soil Mechanics, 2006, 27(1):151-154.(in Chinese)
[14] 薛云亮,李庶林,林峰,等. 考虑损伤阈值影响的钢纤维混凝土损伤本构模型[J]. 岩土力学, 2009, 31(7):1987-1992. XUE Yunliang, LI Shulin, LIN Feng, et al. Study of damage constitutive model of SFRC considering effect of damage threshold[J]. Rock and Soil Mechanics, 2009, 31(7):1987-1992.(in Chinese)
[15] 宁喜亮,丁一宁. 钢纤维对混凝土单轴受压本构模型的影响[J]. 建筑材料学报, 2015, 18(2):214-220. NING Xiliang, DING Yining. Effect of steel fiber on the damage constitutive model of concrete under uniaxial compression[J]. Journal of Building Materials, 2015, 18(2):214-220.(in Chinese)
[16] 邓明科,刘海勃,秦萌,等. 高延性纤维混凝土抗压韧性试验研究[J].西安建筑科技大学学报:自然科学版,2015,47(5):660-665+677. DENG Mingke, LIU Haibo, QIN Meng, et al. Experimental study research on compressive toughness of the high ductile concrete[J].Journal of Xi’an University of Architecture & Technology:Natural Science Edition, 2015,47(5):660-665+677. (in Chinese)
[17] LEMAITRE J. How to use damage mechanics[J]. Nuclear Engineering and Design, 1984, 80(1):233-245.
[18] 曹文贵,赵衡,张玲,等. 考虑损伤阈值影响的岩石损伤统计软化本构模型及其参数确定方法[J]. 岩土力学与工程学报, 2008, 27(6):1148-1154.(in Chinese) CAO Wengui, ZHAO Heng, ZHANG Ling, et al. Damage statistical softening constitutive model for rock considering effect of damage threshold and its parameters determination method[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(6):1148-1154. (in Chinese)
[19] 曹文贵,赵明华,刘成学.基于Weibull分布的岩石损伤软化模型及其修正方法研究[J]. 岩石力学与工程学报, 2004, 23(19):3226-3231. CAO Wengui, ZHAO Minghua, LIU Chengxue. Study on the model and its modifying method for rock softening and damage based on Weibull random distribution[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(19):3226-3231.(in Chinese)
[20] 李树春,许江,李克钢,等. 基于Weibull分布的岩石损伤本构模型研究[J]. 湖南科技大学学报, 2007, 22(4):225-229. LI Shuchun, XU Jiang, LI Kegang, et al. Study on the model for rock softening and damage based on Weibull random distribution[J]. Chinese Journal of Hunan University of Science and Technolgy, 2007, 22(4):225-229.(in Chinese)
[21] GB 50010-2010. 混凝土结构设计规范[S]. GB 50010-2010. Code for Design of Concrete Structures[S]. (in Chinese)

备注/Memo

备注/Memo:
收稿日期:2017-03-10;改回日期:2017-07-05。
基金项目:国家自然科学基金项目(51578445)
作者简介:邓明科(1979-)男,教授,博士,主要从事新型建筑结构材料及新型建筑结构体系研究.E-mail:dengmingke@126.com
更新日期/Last Update: 1900-01-01