[1]高广运,谢伟,王禹.考虑地震动特性的饱和砂土震陷计算方法[J].地震工程与工程振动,2018,(02):010-17.[doi:10.13197/j.eeev.2018.02.10.gaogy.002]
 GAO Guangyun,XIE Wei,WANG Yu.Calculation method of saturated sand compression considering seismic motion characteristics[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2018,(02):010-17.[doi:10.13197/j.eeev.2018.02.10.gaogy.002]
点击复制

考虑地震动特性的饱和砂土震陷计算方法
分享到:

《地震工程与工程振动》[ISSN:/CN:]

卷:
期数:
2018年02
页码:
010-17
栏目:
论文
出版日期:
2018-08-03

文章信息/Info

Title:
Calculation method of saturated sand compression considering seismic motion characteristics
作者:
高广运12 谢伟12 王禹3
1. 同济大学 地下建筑与工程系, 上海 200092;
2. 同济大学 岩土及地下工程教育部重点实验室, 上海 200092;
3. 新西兰奥克兰大学 土木与环境工程系, 奥克兰 1010
Author(s):
GAO Guangyun12 XIE Wei12 WANG Yu3
1. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China;
2. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092, China;
3. Department of Civil and Environmental Engineering, The University of Auckland, Auckland 1010, New Zealand
关键词:
砂土震陷地震动特性震陷比相对密度OpenSees
Keywords:
seismic compression of sandsseismic motion characteristicsseismic compression ratiorelative densityOpenSee
分类号:
TU43
DOI:
10.13197/j.eeev.2018.02.10.gaogy.002
摘要:
为探究地震动特性对砂土震陷的影响,提出合理的震陷评价方法,本文利用开源有限元平台OpenSees对饱和砂土自由场地震陷进行数值模拟,研究了地震动维度和方向角对砂土震陷的影响,以震陷比为评价指标,分析了水平单向荷载简化二维荷载的合理性,并对震陷和震陷比与地震动强度参数进行相关性研究,提出了考虑地震动特性的饱和砂土震陷计算方法。结果表明:饱和砂土在地震动水平双向荷载作用下的孔压和震陷均大于单向加载结果,但小于两个单向荷载分别施加产生的结果之和,也小于任一单向加载下结果的2倍;地震动方向对震陷比影响显著,且不同地震动得到的最大震陷比对应的方向角存在差异,表明采用某一确定方向的一维荷载简化分析二维荷载的方法并不合理;震陷量与地震动强度参数Sa(0.6 s)和VSI相关性较好,以VSI为参数提出的预估公式可快速计算震陷量;砂土相对密度越大,计算结果越准确。
Abstract:
In order to explore the influence of seismic motion characteristics on sand compression and propose a reasonable evaluation method of sand seismic compression, this paper used the open source finite element platform OpenSees to simulate the seismic compression of sand, and the influence of seismic dimension and directionality on the compression of saturated sand is studied. Using the seismic collapse ratio as the evaluation index, the rationality of the simple one-way load to simplify the two-dimensional load is analyzed, and the correlation between seismic compression and seismic load parameters is studied. Finally, a method for calculating the saturated sand compression which considers the characteristics of seismic motion is proposed. The results show that the pore water pressure and the seismic compression of the saturated sand under horizontal bidirectional seismic load are larger than horizontal unidirectional loading results, but less than the sum of the result of the two unidirectional load and twice the result of any unidirectional loading. The direction of the seismic motion has a significant effect on the seismic subsidence ratio, and the maximum sag ratio obtained by different seismic motion is dissimilar from the corresponding angle. It is not reasonable to use a one-dimensional load of a certain direction to simplify the analysis of two-dimensional loads. The correlation between the seismic load and it’s strength parameter Sa (0.6 s) and VSI is good, and the prediction formula which uses VSI as a parameter can quickly calculate the amount of seismic; the greater the relative density of sand, the more accurate the calculation results.

参考文献/References:

[1] Bradley B A, Baker J W. Ground motion directionality in the 2010-2011 Canterbury earthquakes[J]. Earthquake Engineering and Structural Dynamics, 2014, 44(3):371-384.
[2] 陈青生, 高广运, 何俊锋. 地震荷载不规则性对砂土震陷的影响[J]. 岩土力学, 2011, 32(12):3713-3720. CHEN Qingsheng, GAO Guangyun, HE Junfeng. Effect of irregularity of earthquake loading on seismic compression of sand[J]. Rock and Soil Mechanics, 2011, 32(12):3713-3720.(in Chinese)
[3] Ishihara K, Yasuda S. Sand liquefaction under random earthquake loading condition[C]//Proceeding of 5th WCEE, Canda, 1973:329-338.
[4] Riddell R, Eeri A M. On ground motion intensity indices[J]. Earthquake Spectra, 2007, 23(1):147-173.
[5] 叶列平, 马千里, 缪志伟. 结构抗震分析用地震动强度指标的研究[J]. 地震工程与工程振动, 2009, 29(4):9-22. YE Lieping, MA Qianli, MIAO Zhiwei. Study on earthquake intensities for seismic analysis of structures[J]. Journal of Earthquake Engineering and Engineering Dynamics, 2009, 29(4):9-22.(in Chinese)
[6] Athanatopoulou A M, Tsourekas A, Papamanolis G. Variation of response with incident angle under two horizontal correlated seismic components[J]. Earthquake Resistant Engineering Structures V, 2014, 81(5):183-192.
[7] Cornell C A, Krawinkler H. Progress and challenges in seismic performance assessment[J]. PEER Center News, 2000, 20(2):130-139.
[8] Shahnazari H, Towhata I. Torsion shear tests on cyclic stress-dilatancy relationship of sand[J]. Soils and Foundations, 2002, 42(1):105-119.
[9] Whang D H, Stewart J P. Effect of compaction conditions on the seismic compression of compacted fill soils[J]. Geotechnical Testing Journal, 2004, 27(4):371-379.
[10] Stamatopoulos C A, Balla L N, Stamatopoulos A C, et al. Earthquake-induced settlement as a result ofdensification, measured in laboratory tests[C]//Proc 13th World Conf on Earthquake Engineering. Vancouver, 2004:1-15.
[11] Tokimatsu K, Seed H B. Evaluation of settlements in sands due to earthquake shaking[J]. Journal of Geotechnical Engineering, 1987, 113(8):861-878.
[12] 陈青生, 高广运, 何俊锋,等. 多向地震荷载对砂土震陷的影响[J]. 岩土工程学报, 2011, 33(7):1022-1028. CHEN Qingsheng, GAO Guangyun, HE Junfeng. Effect of multidirectional earthquake loading on seismic compression of sand[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(7):1022-1028.(in Chinese)
[13] Nie C X, Chen Q S, Gao G Y, et al. Determination of seismic compression of sand subjected to two horizontal components of earthquake ground motions[J]. Soil Dynamics and Earthquake Engineering, 2017, 92:330-333.
[14] Wang R, Zhang J, Wang G. A unified plasticity model for large post-liquefaction shear deformation of sand[J]. Computers and Geotechnics, 2014, 59(3):54-66.
[15] Shahir H, Pak A, Taiebat M, et al. Evaluation of variation of permeability in liquefiable soil under earthquake loading[J]. Computers and Geotechnics, 2012, 40(3):74-88.
[16] Shahir H, Mohammadi-Haji B, Ghassemi A. Employing a variable permeability model in numerical simulation of saturated sand behavior under earthquake loading[J]. Computes And Geotechnics, 2014, 55(1):211-223.
[17] Yang Z, Lu J, Elgamal A. OpenSees soil models and solid-fluid fully coupled elements[M]. University of California, San Diego, California. 2008.
[18] Power M, Chiou B, Abrahamson N, et al. An overview of the NGA project[J]. Earthquake Spectra, 2008, 24(1):3-21.
[19] 梁甜. 含粘粒砂土抗液化性能的剪切波速表征研究[D]. 杭州:浙江大学, 2013. LIANG Tan. Characterizing liquefaction resistance of clayed sand by shear wave[D]. Hangzhou:Zhejiang University, 2013.
[20] Kayen R E, Mitchell J K. Assessment of liquefaction potential during earthquakes by Arias intensity[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1997, 123(12):1162-1174.
[21] Kramer S L, Mitchell R A. Ground motion intensity measures for liquefaction hazard evaluation[J]. Earthquake Spectra, 2006, 22(2):413-438.
[22] Kramer S L, Arduino P, Shin H. Using OpenSees for performance-based evaluation of bridges on liquefiable soils[M]. Pacific Earthquake Engineering Research Center, 2008.
[23] Bradley B A, Cubrinovski M, Dhakal R P, et al. Intensity measures for the seismic response of pile foundations[J]. Soil Dynamics and Earthquake Engineering, 2009, 29(6):1046-1058.

备注/Memo

备注/Memo:
收稿日期:2017-06-01;改回日期:2017-09-10。
基金项目:国家自然科学基金项目(41372271)
作者简介:高广运(1961-),男,教授,博士,主要从事土动力学和桩基的研究.E-mail:gaoguangyun@263.net
更新日期/Last Update: 1900-01-01