[1]孙小云,韩建平.考虑梁柱节点区非弹性变形评估地震动持时对RC框架震后可修复性的影响[J].地震工程与工程振动,2018,(02):095-105.[doi:10.13197/j.eeev.2018.02.95.sunxy.011]
 SUN Xiaoyun,HAN Jianping.Effect of ground motion duration on post-earthquake reparability of RC frame considering inelastic deformation of beam-column joint[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2018,(02):095-105.[doi:10.13197/j.eeev.2018.02.95.sunxy.011]
点击复制

考虑梁柱节点区非弹性变形评估地震动持时对RC框架震后可修复性的影响
分享到:

《地震工程与工程振动》[ISSN:/CN:]

卷:
期数:
2018年02
页码:
095-105
栏目:
论文
出版日期:
2018-08-03

文章信息/Info

Title:
Effect of ground motion duration on post-earthquake reparability of RC frame considering inelastic deformation of beam-column joint
作者:
孙小云12 韩建平12
1. 兰州理工大学 甘肃省土木工程防灾减灾重点实验室, 甘肃 兰州 730050;
2. 兰州理工大学 防震减灾研究所, 甘肃 兰州 730050
Author(s):
SUN Xiaoyun12 HAN Jianping12
1. Key Laboratory of Disaster Prevention and Mitigation in Civil Engineering of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, China;
2. Institute of Earthquake Protection and Disaster Mitigation, Lanzhou University of Technology, Lanzhou 730050, China
关键词:
地震动重要持时梁柱节点区非弹性变形震后可修复性增量动力分析残余变形
Keywords:
significant duration of ground motioninelastic deformation of beam-column jointpost-earthquake reparabilityincremental dynamic analysisresidual deformation
分类号:
TU352.1
DOI:
10.13197/j.eeev.2018.02.95.sunxy.011
摘要:
可修复性评价是震后结构性能评估和决策的重要方面,残余变形是可用于评价结构震后可修复性的重要指标之一。为体现梁柱节点区可能的非弹性变形模式的影响,采用3种模拟工况,即梁柱节点区不考虑非弹性变形、考虑钢筋粘结滑移以及钢筋粘结滑移和剪切变形同时发生。以此为基础,选择一6层钢筋混凝土框架-填充墙结构为算例,利用OpenSees分析软件分别建立梁柱节点不同模拟工况所对应的有限元模型,选取长、短持时地震动记录各30条并进行基于规范目标谱的匹配。以此60条地震动记录为输入进行增量动力分析,得到对应于不同节点模拟工况两组持时地震动记录的结构增量动力分析曲线、地震动重要持时与结构残余变形之间的相关性和基于残余变形的结构地震易损性曲线,进而评估地震动持时对结构震后可修复性的影响。分析结果表明,随着地震动重要持时的增长,结构残余变形均有轻微增大的趋势,且随着梁柱节点区非弹性变形发展程度的增大,此趋势愈加明显;同一工况下,相对于短持时地震动记录,长持时地震动记录对结构可修复性评价结果的影响更为明显;同一损伤水平下,随着梁柱节点区非弹性变形发展的明显,长、短持时地震动记录对其可修复性评价结果的影响均依次明显。
Abstract:
Reparability evaluation of structures plays a very important role in post-earthquake performance evaluation and decision-making. Residual deformation is one of the usable indices to evaluate the post-earthquake reparability of structures. First, three modelling cases for beam-column joints were taken in order to account for the influence of the possible inelastic deformation of beam-column joint, which are the joint without considering inelastic deformation, with considering the bar bond-slip and with considering the bar bond-slip and the shear deformation together. Then, a 6-storey infilled reinforced concrete (RC) frame was taken and different finite element models of the structure corresponding to the different joint modelling cases were built via OpenSees. 30 long-duration and 30 short-duration ground motion records were selected and spectrally matched to the design code target spectrum. Furthermore, Incremental dynamic analyses (IDA) were conducted on the numerical models with different joint models respectively under the 60 ground motion records. The IDA curves for two sets of ground motion records, the correlation between the significant duration of ground motion and residual deformation, the seismic fragility curves for two sets of ground motion records based on residual deformation were obtained to investigate the influence of ground motion duration on post-earthquake reparability of the structure. The analytical results show that the residual deformation increases slightly with the increase of significant duration, and this trend becomes more and more obvious with the inelastic deformation increase of joints. The effect of long-duration ground motion on post-earthquake reparability is more obvious than that of short-duration ground motion records for the frames with the same joint models. And with the same fragility level, the effect of long and short duration records on post-earthquake reparability is more and more obvious with the inelastic deformation increase of joints.

参考文献/References:

[1] Bommer J J, Magenes G, Hancock J, et al. The influence of strong motion duration on the seismic response of masonry structures[J]. Bulletin of the Seismological Society of America, 2004, 2(1):1-26.
[2] Reagan C, Baker J W, Deierlein G G, et al. Hazard-consistent ground motion duration:calculation procedure and impact on structural collapse risk[C]//Proc. of the 10th U.S. National Conference on Earthquake Engineering, Anchorage, Alaska:Earthquake Engineering Research Institute, 2014.
[3] Foschaar J C, Baker J W, Deierlein G G. Preliminary assessment of ground motion duration effects on structural collapse[C]//Proc. of the 15th World Conference on Earthquake Engineering, Lisboa, Portugal:International Association for Earthquake Engineering, 2012:5363.
[4] Lin L, Naumoski N, Saatcioglu M, et al. Effects of strong-motion duration on the response of reinforced concrete frame buildings[C]//Proc. of the 9th U.S. National and 10th Canadian Conference on Earthquake Engineering, Toronto, Ontario, Canada:Canadian Association for Earthquake Engineering, 2010:810.
[5] Raghunandan M, Liel A B. Effect of ground motion duration on earthquake-induced structural collapse[J]. Structural Safety, 2013, 41:119-133.
[6] 韩建平, 孙小云, 周颖. 基于规范谱拟合的人工地震动持时对RC框架结构抗倒塌能力影响[J]. 建筑结构学报, 2016, 37(7):121-126. HAN Jianping, SUN Xiaoyun, ZHOU Ying. Effect of code-spectrum-matched artificial ground motion duration on collapse resistance capacity of RC frame[J]. Journal of Building Structures, 2016, 37(7):121-126. (in Chinese)
[7] 郝建兵, 吴刚, 吴智深. 基于震后残余位移的结构可修复性研究[J]. 建筑结构, 2013, 43(增刊1):1254-125. HAO Jianbing, WU Gang, WU Zhishen. Research on structures’ reparability based on post-earthquake residual deformation[J]. Building Structure, 2013, 43(S1):1254-1257. (in Chinese)
[8] 韩建平, 黄林杰. 新旧规范设计RC框架地震易损性分析及抗整体性倒塌能力评估[J]. 建筑结构学报, 2015, 36(增刊2):92-99. HAN Jianping, HUANG Linjie. Seismic fragility analysis and global collapse resistance capacity investigation on RC frame designed by new and old seismic design codes[J]. Journal of Building Structures, 2015, 36(S2):92-99. (in Chinese)
[9] 孙治国, 陈灿, 司炳君, 等. 考虑非线性剪切效应的RC桥墩抗震分析模型[J]. 工程力学, 2015, 32(5):28-36. SUN Zhiguo, CHEN Can, SI Bingjun, et al. Seismic analysis model considering nonlinear shear effect for RC bridge piers[J]. Engineering Mechanics, 2015, 32(5):28-36. (in Chinese)
[10] 朱绩超, 王响, 张勤. 考虑粘结-滑移与剪切作用的钢筋混凝土柱侧向变形分析[J]. 工程力学, 2015, 32(7):128-135. ZHU Jichao, WANG Xiang, ZHANG Qin. Lateral deformations analysis of reinforced concrete columns incoparating bond-slip and shear effects[J], Engineering Mechanics, 2015, 32(7):128-135. (in Chinese)
[11] 姜绍飞, 杨博, 党永勤. 易损性分析在结构抗震及健康监测中的应用[J]. 建筑科学与工程学报, 2008, 25(2):15-23. JIANG Shaofei, YANG Bo, DANG Yongqin. Application of vulnerability analysis in structural seism and health monitoring[J]. Journal of Architecture and Civil Engineering, 2008, 25(2):15-23. (in Chinese)
[12] Jamnani H H, Abdollahzaded G, Faghihmaleki H. Seismic fragility analysis of improved RC frames using different types of bracing[J]. Journal of Engineering Science and Technology, 2017, 12(4):913-934.
[13] Polese M, Di Ludovico M, Marcolini M, et al. Assessing reparability:Simple tools for estimation of costs and performance loss of earthquake damaged reinforced concrete buildings[J]. Earthquake Engineering & Structural Dynamics, 2015, 44(10):1539-1557.
[14] 安宁. RC框架结构抗震可恢复性与一致倒塌率[D]. 大连:大连理工大学, 2016. AN Ning. The structural seismic resilience and consistent collapse probability of reinforced concrete frame[D]. Dalian:Dalian University of Technology, 2016. (in Chinese)
[15] 于晓辉, 吕大刚. HAZUS相容的钢筋混凝土框架结构地震易损性分析[J]. 工程力学, 2016, 33(3):152-159. YU Xiaohui, LU Dagang. HAZUS-compatible seismic fragility analysis for RC frame structures[J]. Engineering Mechanics, 2016, 33(3):152-159. (in Chinese)
[16] Karamlou A, Bocchini P. Computation of bridge seismic fragility by large-scale simulation for probabilistic resilience analysis[J]. Earthquake Engineering & Structural Dynamics, 2015, 44(12):1959-1978.
[17] 张令心, 徐梓洋, 刘洁平, 等. 基于增量动力分析的超高层混合结构地震易损性分析[J]. 建筑结构学报, 2016, 37(9):19-25. ZHANG Lingxin, XU Ziyang, LIU Jieping, et al. Seismic vulnerability analysis of super high-rise hybrid structures based on incremental dynamic analysis[J]. Journal of Building Structures, 2016, 37(9):19-25. (in Chinese)
[18] FEMA P-58-1. Seismic performance assessment of buildings Volume1-Methodology[R]. Washington, D. C.:Federal Emergency Management Agency, 2012.
[19] Kam W Y, Pamapanin S, Carr A J. Design procedure and behavior of advanced flag-shape (AFS) MDOF systems[C]//Proc. of NZSEE 2008 Conference, Wairakei, NZ:2008:38.
[20] 韩建平, 杨军平. 考虑结构构件退化特性评估大震下RC框架抗整体性倒塌能力[J]. 地震工程与工程振动, 2012, 32(6):111-122. HAN Jianping, YANG Junping. Investigation on global collapse resistance capacity of RC frame under severe earthquake considering deterioration characteristic of structural components[J]. Earthquake Engineering and Engineering Dynamics, 2012, 32(6):111-122. (in Chinese)
[21] Mazzoni S, McKenna F, Fenves G L. The OpenSees getting started manual[EB/OL].(2007-07-01)[2015-7]. http://OpenSees.berkeley.edu.
[22] Kunnath S K, Heo Y A, Mohle J F. Nonlinear uniaxial material model for reinforcing steel bars[J]. ASCE Journal of Structural Engineering, 2009, 135(4):335-343.
[23] 韩建平, 黄林杰, 孙小云. 考虑填充墙平面内外相互作用评估RC框架-填充墙结构抗整体性倒塌能力[J]. 工程力学, 2016, 33(9):146-154. HAN Jianping, HUANG Linjie, SUN Xiaoyun. Global collapse resistance capacity investigation of infilled RC frame considering in-plane and out-of-plane interaction of infill walls[J]. Engineering Mechanics, 2016, 33(9):146-154. (in Chinese)
[24] Zhao J, Sritharan S. Modeling of strain penetration effects in fiber-based analysis of reinforced concrete structures[J]. ACI Structural Journal, 2007, 104(2):133-141.
[25] Elwood K J, Moehle J P. Dynamic collapse analysis for a reinforced concrete frame sustaining shear and axial failures[J]. Earthquake Engineering and Structural Dynamics, 2008, 37(7):991-1012.
[26] Trifunac M D, Brady A G. A study on the duration of strong earthquake ground motion[J]. Bulletin of the Seismological Society of American. 1975, 65(3):581-626.
[27] Bommer J J, Stafford P J, Alarcon J E. Empirical equations for the prediction of the significant, bracketed and uniform duration of earthquake ground motion[J]. Bulletin of the Seismological Society of America, 2009, 99(6):3217-3233.
[28] Uma S R, Pampanin S, Christopoulos C. Development of probabilistic framework for performance-based seismic assessment of structures considering residual deformations[J]. Journal of Earthquake Engineering, 2010, 14(7):1092-1111.
[29] 郝建兵, 吴刚, 吴智深. 单自由度体系等强度残余位移谱研究[J]. 土木工程学报, 2013, 46(10):82-88. HAO,Jianbing, WU Gang, WU Zhishen. A study on constant-relative-strength residual deformation ratio spectrum of SDOF system[J]. China Civil Engineering Journal, 2013,46(10):82-88.(in Chinese)
[30] Hosseinpour F, Abdelnaby A E. Fragility curves for RC frames under multiple earthquakes[J]. Soil Dynamics and Earthquake Engineering, 2017, 98:222-234.(in Chinese)
[31] Kam W Y, Pampanin S, Palermo A, et al. Self-centering structural systems with combination of hysteretic and viscous energy dissipations[J]. Earthquake Engineering & Structural Dynamics, 2010, 39(10):1083-1108.
[32] 陆新征, 叶列平. 基于IDA分析的结构抗地震倒塌能力研究[J]. 工程抗震与加固改造, 2010, 32(1):13-18. LU Xinzheng, YE Lieping. Study on the seismic collapse resistance of structural system[J]. Earthquake Resistant Engineering and Retrofitting, 2010, 32(1):13-18. (in Chinese)
[33] 杜永峰, 武大洋. 基于刚度需求设计的轻型消能摇摆架减震性态分析[J]. 土木工程学报, 2014, 47(1):24-35. DU Yongfeng, WU Dayang. Performance analysis of light energy dissipative rocking frame designed on the basis of stiffness demand[J]. China Civil Engineering Journal, 2014, 47(1):24-35. (in Chinese)

备注/Memo

备注/Memo:
收稿日期:2017-06-15;改回日期:2017-09-15。
基金项目:国家自然科学基金项目(51578273,51268036);教育部长江学者和创新团队发展计划(IRT13068)
作者简介:孙小云(1988-),女,博士研究生,主要从事工程结构抗震研究.E-mail:sxyhuining@163.com
通讯作者:韩建平(1970-),男,教授,博士,主要从事结构抗震、减震控制及损伤识别研究.E-mail:jphan@lut.edu.cn
更新日期/Last Update: 1900-01-01