[1]王瑞,庄海洋,陈国兴,等.地面微倾斜可液化场地中地铁地下车站结构的地震反应研究[J].地震工程与工程振动,2018,(02):130-140.[doi:10.13197/j.eeev.2018.02.130.wangr.015]
 WANG Rui,ZHUANG Haiyang,CHEN Guoxing,et al.Seismic response of subway underground station buried in liquefiable soil foundation with the ground surface slight inclined[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2018,(02):130-140.[doi:10.13197/j.eeev.2018.02.130.wangr.015]
点击复制

地面微倾斜可液化场地中地铁地下车站结构的地震反应研究
分享到:

《地震工程与工程振动》[ISSN:/CN:]

卷:
期数:
2018年02
页码:
130-140
栏目:
论文
出版日期:
2018-08-03

文章信息/Info

Title:
Seismic response of subway underground station buried in liquefiable soil foundation with the ground surface slight inclined
作者:
王瑞 庄海洋 陈国兴 付继赛
南京工业大学 岩土工程研究所, 江苏 南京 2100091
Author(s):
WANG Rui ZHUANG Haiyang CHEN Guoxing FU Jisai
Institute of Geotechnical Engineering, Nanjing Technology University, Nanjing 2100091, China
关键词:
地铁地下车站结构砂土液化土层侧移地震反应微倾斜场地
Keywords:
subway underground subway structuresand liquefactionlateral deformation of soilseismic responseslight inclined ground
分类号:
TU441
DOI:
10.13197/j.eeev.2018.02.130.wangr.015
摘要:
砂土液化造成了大量建筑物的破坏,但目前对砂土液化地基中地铁地下结构的地震反应研究相对较少,尤其对微倾斜液化地基中地铁地下结构地震反应的研究更为缺乏。基于有限单元法,采用已开发的砂土液化大变形动力本构模型模拟液化土层的剪切大变形,采用基于ALE (Arbitrary Lagrange-Euler)算法的有限单元网格动态自适应调整技术解决土体液化大变形发生后有限单元的畸变问题,建立了地面微倾斜液化地基中土体-地下结构非线性动力相互作用的数值分析模型,分析了地面倾角变化对地铁车站周围地基液化分布特征、车站结构周围土层侧移变形特征、地下结构上浮和应力反应的影响规律,揭示了微倾斜液化地基中地铁地下车站结构的地震反应特征。
Abstract:
Sand liquefaction has induced many damages to the buildings. However, few studies have been done to investigate the seismic response of subway underground structure buried in liquefiable soil foundation, especially when it is buried in liquefiable soil foundation with the ground surface slight inclined. Accordingly, the shear deformation of liquefied sand was modeled by a special soil constructive model and the Arbitrary Lagrange-Euler method used to prevent the distorted soil elements. As a result, a soil-underground structure interaction model was made by finite element method. Based on the results, how the inclined angle affect the liquefaction condition of soil foundation, the lateral deformation and floating of subway underground structure, the seismic stress response of underground structure, were analyzed. The seismic responses rule of subway underground station buried in liquefiable soil foundation with the ground surface slight inclined was revealed.

参考文献/References:

[1] Hamada M, Towhata I, Yasuda S,Isoyama R. Study of permanent ground displacement induced by seismic liquefaction[J]. Computers and Geotechnics, 1987, 4(4):197-220.
[2] 刘颖, 谢君斐.砂土震动液化[M].北京:地震出版社,1984. LIU Ying, XIE Junfei. Sand liquefaction[M].Beijing:Seismological Press, 1984. (in Chinese)
[3] 中国赴日地震考察团.日本阪神大地震考察[M]. 北京:地震出版社,1995. Chinese earthquake investigation group in Japan. Investigation of earthquake damages during Kobe earthquake in Japan[M]. Beijing:Seismological Press, 1995.(in Chinese)
[4] 曹振中, 侯龙清, 袁晓铭, 等. 汶川8.0级地震液化震害及特征[J]. 岩土力学, 2010, 31(11):3549-3555. CAO Zhenzhong, HOU Longqing, YUAN Xiaoming, et al. Characteristics of liquefaction-induced damages during Wenchuan Ms 8.0 earthquake[J]. Rock and Soil Mechanics, 2010, 31(11):3549-3555.(in Chinese)
[5] 中国地震局工程力学研究所. 新西兰6.3级地震震害初步分析[R].哈尔滨:中国地震局工程力学研究所,2010. Institute of engineering mechanics, IEA. Preliminary analysis of earthquake damage during New Zealand Ms 6.3 earthquake[R]. Harbin:Institute of Engineering Mechanic, China Earthquake Administration, 2010.(in Chinese)
[6] Turner-Fairbank Highway Research Center. Post earthquake reconnaissance report on transportation infrastructure inpact of the February 27, 2010, offshore Maule Earthquake in Chile[R]. Publication No. FHWA-HRT-11-030, 2011.
[7] Zhuang HY, Chen G X, Hu Z H, et al. Influence of soil liquefaction on the seismic response of a subway station in model tests[J]. Bulletin of Engineering Geology and the Environment, 2016, 75(3):1169-1182.
[8] 杜修力, 王刚, 路德春. 日本阪神地震中大开地铁车站地震破坏机理分析[J]. 防灾减灾工程学报, 2016(2):165-171. DU Xiuli, WANG Gang, LU Dechun. Earthquake damage mechanism analysis of Dakai Metro station by Kobe earthquake[J]. Journal of Disaster Prevention and Mitigation Engineering, 2016(2):165-171.(in Chinese)
[9] Pitilakis K, Tsinidis G. Performance and seismic design of underground structures[M]. In Earthquake Geotechnical Engineering Design. Springer International Publishing, 2014:279-340.
[10] Yasuda S, Nagase H, Kiku H, et al. The mechanism and a simplified procedure for the analysis of permanent ground displacement due to liquefaction[J]. Soils and Foundations, 1992, 32(1):149-160.
[11] Zhaohui Yang, Ahmed Elgamal. Influence of permeability on liquefaction-induced shear deformation[J]. Journal of Engineering Mechanics, 2002, 128(7):720-729.
[12] Ahmed Elgamal, Zhaohui Yang, Parra Ender. Properties of a phase-conjugate etalon mirror and its application to laser resonator spatial-mode control[J]. Soil Dynamics and Earthquake Engineering, 2002, 22(4):259-271.
[13] 庄海洋, 陈国兴. 对土体动力粘塑性记忆型嵌套面模型的改进[J].岩土力学, 2009, 30(1):118-122. ZHUANG Haiyang, CHEN Guoxing. Improvement of dynamic viscoplastic memorial nested yield surface model of soil[J]. Rock and Soil Mechanics, 2009,30(1):118-122.(in Chinese)
[14] Jeeho Lee, Gregory L. Fenves. Plastic-damage model for cyclic loading of concrete structures[J]. Journal of Engineering Mechanics, 1998(4):892-900.
[15] Lubliner J., Oliver J., Oller S. and Onate E. A plastic-damage model for concrete[J]. International Journal of Solids and Structures, Vol.25, 1989(3):299-326.
[16] 刘晶波, 李彬. 三维粘弹性静-动力统一人工边界[J]. 中国科学:E辑, 2005, 35(9):966-980. LIU Jingbo, LI Bin. Three-dimensional viscoelastic static and dynamic unified artificial boundary[J]. Science In China:LSer.E, 2005, 35(9):966-980.(in Chinese)
[17] Hirt C W, Cook J L, Butler T D. A lagrangian method for calculating the dynamics of an incompressible fluid with free surface ☆[J]. Journal of Computational Physics, 1970, 5(1):103-124.
[18] Takashi N, Hughes T J R. An arbitrary Lagrangian-Eulerian finite element method for interaction of fluid and a rigid body[J]. Computer Methods in Applied Mechanics & Engineering, 1992, 95(1):115-138.
[19] Kjellgren P, Hyv? rinen J. An Arbitrary Lagrangian-Eulerian finite element method[J]. Computational Mechanics, 1998, 21(1):81-90.
[20] 王雪剑, 庄海洋, 陈国兴, 等. 地连墙对叠合墙式地铁车站结构地震反应的影响研究[J]. 岩土工程学报, 2017, 39(8):1435-1443. WANG Xuejian, ZHUANG Haiyang, CHEN Guoxing, et al. Effect of diaphragm wall on earthquake responses of an underground subway station[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8):1435-1443.(in Chinese)
[21] BS 5975:2008+ A12011. Code of Practice for Temporary Works Procedures and the Permissible Stress Design of Falsework[S]. BS Institution, 2011.
[22] Zhuang H Y, Hu Z H, Wang X J, et al. Seismic responses of a large underground structure in liquefied soils by FEM numerical modelling[J]. Bulletin of Earthquake Engineering, 2015, 13(12):3645-3668.

相似文献/References:

[1]王根龙,林玮,蔡晓光.基于Finn本构模型的饱和砂土地震液化分析[J].地震工程与工程振动,2010,(03):178.
 WANG Genlong,LIN Wei,CAI Xiaoguang.Seismic liquefaction analysis of saturated sand soil based on Finn constitutive model[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2010,(02):178.
[2]王根龙,刘奇斌,刘红帅.液化型路堤边坡地震安全性分析[J].地震工程与工程振动,2010,(04):172.
 WANG Genlong,LIU Qibin,LIU Hongshui.Safety analysis of embankment slope with seismic liquefaction problems[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2010,(02):172.
[3]董林,胡伟华,曹振中,等.新疆巴楚地震液化宏观现象的对比分析[J].地震工程与工程振动,2010,(06):179.
 DONG Lin,HU Weihua,CAO Zhenzhong,et al.Comparative analysis of soil liquefaction macro-phenomena in Bachu earthquake[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2010,(02):179.
[4]庄海洋,龙慧,陈国兴.复杂大型地铁地下车站结构非线性地震反应分析[J].地震工程与工程振动,2013,04(02):192.
 ZHUANG Haiyang,LONG Hui,CHEN Guoxing.Analysis of the nonlinear earthquake responses of a large complicated subway underground station[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2013,04(02):192.
[5]陈贵清,郝婷玥,吴班,等.长输管道抗震研究的新进展[J].地震工程与工程振动,2006,(03):193.
 Chen Guiqing,Hao Tingyue,Wu Ban,et al.New advances in seismic research of long-distance transportation pipes[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2006,(02):193.
[6]徐令宇,王国新,蔡飞,等.可液化场地地震反应完全耦合动力分析及其验证[J].地震工程与工程振动,2014,01(06):136.[doi:10.13197/j.eeev.2014.06.136.xuly.018]
 XU Lingyu,WANG Guoxin,CAI Fei,et al.Fully coupled dynamic analysis of seismic response of liquefiable site[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2014,01(02):136.[doi:10.13197/j.eeev.2014.06.136.xuly.018]
[7]洑旭江,常素萍,陈国兴.地下结构地震反应分析拟静力法与动力非线性时程法的比较[J].地震工程与工程振动,2016,01(01):044.[doi:10.13197/j.eeev.2016.01.44.fuxj.006]
 FU Xujiang,CHANG Suping,CHEN Guoxing.Comparison of pseudo static method and nonlinear dynamic method of subway station structure seismic response analysis[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2016,01(02):044.[doi:10.13197/j.eeev.2016.01.44.fuxj.006]
[8]李兆焱,袁晓铭.2016年台湾高雄地震场地效应及砂土液化破坏概述[J].地震工程与工程振动,2016,01(03):001.[doi:10.13197/j.eeev.2016.03.1.lizy.001]
 LI Zhaoyan,YUAN Xiaoming.Seismic damage summarization of site effect and soil liquefaction in 2016 Kaohsiung earthquake[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2016,01(02):001.[doi:10.13197/j.eeev.2016.03.1.lizy.001]
[9]付海清,袁晓铭.液化对地表运动影响的现场试验研究[J].地震工程与工程振动,2016,01(05):099.[doi:10.13197/j.eeev.2016.05.99.fuhq.011]
 FU Haiqing,YUAN Xiaoming.Effect of soil liquefaction on ground motion using artificial vibration[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2016,01(02):099.[doi:10.13197/j.eeev.2016.05.99.fuhq.011]
[10]李兆焱,王梦龙,吴晓阳.唐山和巴楚地区液化土动力性能比较研究[J].地震工程与工程振动,2016,01(05):162.[doi:10.13197/j.eeev.2016.05.162.lizy.019]
 LI Zhaoyan,WANG Menglong,WU Xiaoyang.Relationship of dynamic performance of liquefied soil between Tangshan and Bachu regions[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2016,01(02):162.[doi:10.13197/j.eeev.2016.05.162.lizy.019]

备注/Memo

备注/Memo:
收稿日期:2017-07-20;改回日期:2017-10-25。
基金项目:国家自然科学基金面上项目(51778290,51778282);国家自然科学基金青年项目(51508526);江苏省高校自然科学基金重大项目(16KJA560001)
作者简介:王瑞(1993-),男,硕士研究生,主要从事岩土地震工程研究.E-mail:ruixzfn@163.com
通讯作者:庄海洋(1978-),男,教授,主要从事岩土地震工程与结构抗震研究.E-mail:zhuang7802@163.com
更新日期/Last Update: 1900-01-01