[1]张也,薛松领,常军.基于负刚度的减振设备参数优化及其应用[J].地震工程与工程振动,2018,(02):201-209.[doi:10.13197/j.eeev.2018.02.201.zhangy.023]
 ZHANG Ye,XUE Songling,CHANG Jun.Parameter optimization and application of vibration damping device based on negative stiffness[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2018,(02):201-209.[doi:10.13197/j.eeev.2018.02.201.zhangy.023]
点击复制

基于负刚度的减振设备参数优化及其应用
分享到:

《地震工程与工程振动》[ISSN:/CN:]

卷:
期数:
2018年02
页码:
201-209
栏目:
论文
出版日期:
2018-08-03

文章信息/Info

Title:
Parameter optimization and application of vibration damping device based on negative stiffness
作者:
张也 薛松领 常军
苏州科技大学 土木工程学院, 江苏 苏州 215011
Author(s):
ZHANG Ye XUE Songling CHANG Jun
School of Civil Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
关键词:
负刚度被动减振参数优化有限元分析减振效果
Keywords:
negative stiffnesspassive vibration isolationparameter optimizationthe finite element analysisvibration isolate effect
分类号:
TU311.3;TU352.1
DOI:
10.13197/j.eeev.2018.02.201.zhangy.023
摘要:
为了更加有效地控制结构振动,论文基于负刚度理论,设计了一种行之有效的被动减振装置。该设备通过正负刚度子结构并联,提高系统承载能力,降低系统固有刚度,从而有效隔离低频振动。通过分析该装置的结构和刚度特性,建立了设备的刚度函数表达式及平衡位置处的零刚度条件,进而找到了影响设备的主要参数并对其进行优化。采用MADIS有限元软件分析了在地震荷载作用下安装该设备的框架结构的减振效果,并与原框架进行对比,研究表明该设备能够有效地控制结构振动,且参数优化结果是有效的。该研究成果为后续试验研究和实际工程应用提供理论依据。
Abstract:
To control structure vibration effectively, an effective passive vibration isolation device based on the theory of negative stiffness is presented. The device can improve system capacity and reduce the inherent stiffness of system and isolate low-frequency vibration effectively through paralleling positive and negative stiffness substructures. Through the analysis of the structure and stiffness characteristics of the device, set up the equipment of the stiffness function expression and the zero stiffness of equilibrium position condition, then find the influence of main parameters and its optimization. Using MADIS finite element software, the vibration reduction effect of the frame structure under earthquake load is analyzed, and compared with the original framework, research shows that the device can effectively control the structure vibration, and parameter optimization result is valid. The study results provide theoretical basis for subsequent experimental study and practical application of the device.

参考文献/References:

[1] 纪晗, 熊世树, 袁涌, 等. 基于负刚度原理的结构减震效果理论分析[J]. 振动与冲击, 2010, 29(3):91-94. JI Han, XONG Shishu, YUAN Yong, et al. Influence analysis of the structural seismic reduction effect based on negative stiffness principle[J]. Journal of Vibration and Shock, 2010, 29(3):91-94.(in Chinese)
[2] 夏昌,傅大宝,黄滨. 磁悬浮技术在结构减振控制中的应用[J]. 地震工程与工程振动, 2014, 34(1):211-216. XIA Chang, FU Dabao, HUANG Bin. Application of magnetic levitation technique in structural vibration control[J]. Earthquake Engineering and Engineering Dynamics, 2014, 34(1):211-216.(in Chinese)
[3] Winterflood J,Blair D G. A longperiod conical pendulum for vibration isolation[J]. Phys Lett A,1996,222:141-147.
[4] Winterflood J,Blair D G. A longperiod vertical vibration isolator for gravitational wave detection[J]. Phys Lett A,1998,243:1-615.
[5] Winterflood J,Blair D G. Transfer function of an ultralow frequency vibration isolation system[J]. Rev Sci Instrum,1995,66:3216-3218.
[6] Cetin Yilmaz. Analysis and design of uniaxial passive vibration isolators considering stiffness and bandwidth limitations[D]. Michigan:Michigan University,2005.
[7] 彭献, 黎大志, 陈树年. 准零刚度隔振器及其弹性特性设计[J]. 振动、测试与诊断, 1997, 17(4):44-46. PENG Xian, LI Dazhi,CHEN Shunian. Quasi zero vibration isolator stiffness and elastic characteristics design[J]. Journal of Vibration,Measurement & Diagnosis, 1997,17(4):44-46. (in Chinese)
[8] 张建卓, 李旦, 董申, 等. 精密仪器用超低频非线性并联隔振系统研究[J]. 中国机械工程, 2004, 15(1):69-71. ZHANG Jianzhuo, LI Dan, DONG Shen, et al. Study on ultra-low frequency parallel connection isolator used for precision instruments[J]. China Mechanical Engineering, 2004,15(1):69-71.(in Chinese)
[9] 张辉, 张倩琳, 谢汇,等. 基于负刚度原理隔振机构的建模与仿真[J]. 现代科学仪器, 2013(3):76-78. ZHANG Hui, ZHANG Qianlin, XIE Hui, et al. Modeling and simulation of vibration isolation mechanism based on the negative stiffness principle[J]. Modern Scientific Instruments, 2013(3):76-78.(in Chinese)
[10] 童根树, 罗澎. 压杆轴力的等效抗折负刚度[J]. 工程力学, 2010(8):66-71. TONG Genshu, LUO Peng. The equivalent negative flexural stiffness of axial forces in sway-prohibited column[J]. Engineering Mechanics, 2010(8):66-71.(in Chinese)
[11] 路纯红,白鸿柏.新型超低频非线性被动隔振系统的设计[J].振动与冲击, 2011, 30(1):234-236. LU Chunhong,BAI Hongbai. A new type nonlinear ultra-low frequency passive vibration isolation system[J]. Journal of Vibration and Shock, 2011, 30(1):234-236.(in Chinese)
[12] 史鹏飞. 磁流变阻尼器的拟负刚度控制及实时混合试验方法[D]. 哈尔滨:哈尔滨工业大学, 2011. SHI Pengfei. The negative stiffness control by MR damper and real-time mixing test method[D]. Harbin:Harbin Institute of Technology, 2011.(in Chinese)
[13] 彭超, 龚兴龙, 宗路航,等. 设计和测试一种新型非线性低频被动隔振系统[J]. 振动与冲击, 2013, 32(3):6-11. PENG Chao, GONG Xinglong, ZONG Luhang, et al. Design and test for a new type nonlinear low-frequency passive vibration isolation system[J]. Journal of Vibration and Shock, 2013, 32(3):6-11.(in Chinese)
[14] 许国山, 吴斌. 等效力控制方法在拟动力试验中的应用[J]. 地震工程与工程振动, 2010, 30(2):79-85. XU Guoshan, WU Bin. Application of equivalent force control method to pseudo-dynamic testing[J]. Earthquake Engineering and Engineering Dynamics, 2010, 30(2):79-85.(in Chinese)
[15] Sarlis A A, Pasala D T R, Constantinou M C, et al. Negative stiffness device for seismic protection of structures[J]. Journal of Structural Engineering, 2013,139(7):1124-1133.
[16] Pasala D T R, Sarlis A A S, Nagarajaiah S, et al. A new structural modification approach for seismic protection based on adaptive negative stiffness device:conceptual analysis[J]. American Society of Civil Engineers, 2011:2892-2904.
[17] Attary N, Symans M, Nagarajaiah S, et al. Application of negative stiffness devices for seismic protection of bridge structures[J]. American Society of Civil Engineers, 2014:506-515.
[18] Pasala D T R, Sarlis A A S, Nagarajaiah S, et al. A new structural modification approach for seismic protection using adaptive negative stiffness device[J]. Smc.Hit.Edu.Cn, 2013:639-640.
[19] Attary N, Symans M, Nagarajaiah S, et al. Numerical simulations of a highway bridge structure employing passive negative stiffness device for seismic protection[J]. Earthquake Engineering & Structural Dynamics, 2014, 44(6):973-995.
[20] Chen L, Sun L, Nagarajaiah S. Cable with discrete negative stiffness device and viscous damper:passive realization and general characteristics[J]. Smart Structures & Systems, 2015, 15(3):627-643.

相似文献/References:

[1]许国山,吴斌.等效力控制方法在拟动力试验中的应用[J].地震工程与工程振动,2010,(02):079.
 XU Guoshan,WU Bin.Application of equivalent force control method to pseudo-dynamic testing[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2010,(02):079.
[2]李宏男,孙彤.轨道式负刚度控制系统的优化设计[J].地震工程与工程振动,2018,(01):021.[doi:10.13197/j.eeev.2018.01.21.lihn.003]
 LI Hongnan,SUN Tong.Optimal design for rail-type negative stiffness control system[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2018,(02):021.[doi:10.13197/j.eeev.2018.01.21.lihn.003]

备注/Memo

备注/Memo:
收稿日期:2017-04-05;改回日期:2017-07-15。
基金项目:江苏省自然科学基金项目(BK20141180);江苏省结构工程重点实验室开放课题(DZ1405);江苏省建设系统科技项目(2015ZD77)
作者简介:张也(1991-),男,硕士研究生,主要从事结构健康监测与振动控制研究.E-mail:1728152741@qq.com
更新日期/Last Update: 1900-01-01