[1]饶威波,丁海平,罗翼.台站间距d的分布对地震动空间相干函数的影响[J].地震工程与工程振动,2018,38(03):103-109.[doi:10.13197/j.eeev.2018.03.103.raowb.012]
 RAO Weibo,DING Haiping,LUO Yi.The influence of the distribution of station distance d on the ground motion’s coherence function[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2018,38(03):103-109.[doi:10.13197/j.eeev.2018.03.103.raowb.012]
点击复制

台站间距d的分布对地震动空间相干函数的影响
分享到:

《地震工程与工程振动》[ISSN:/CN:]

卷:
38
期数:
2018年03期
页码:
103-109
栏目:
论文
出版日期:
2018-08-18

文章信息/Info

Title:
The influence of the distribution of station distance d on the ground motion’s coherence function
作者:
饶威波1 丁海平12 罗翼1
1. 江苏省结构工程重点实验室(苏州科技大学), 江苏 苏州 215011;
2. 中国地震局 工程力学研究所, 黑龙江 哈尔滨 150080
Author(s):
RAO Weibo1 DING Haiping12 LUO Yi1
1. Key Laboratory of Structural Engineering of Jiangsu Province(Suzhou University of Science and Technology), Suzhou 215011, China;
2. Institute of engineering mechanics, China Earthquake Administration, Harbin 150080, China
关键词:
SMART-1台阵空间相关性相干函数台站间距参数拟合
Keywords:
SMART-1 arrayspace coherencecoherency functiondistance of stationfitting parameters
分类号:
P315.9
DOI:
10.13197/j.eeev.2018.03.103.raowb.012
摘要:
对地震动空间相干函数进行拟合时,常常遇到台站间距离d偏少的问题。对不同距离台站对的不足对相干函数模型拟合参数的影响进行了对比分析。选取了SMART-1台阵第45号地震的水平分量加速度作为分析数据,计算了d等于200 m,1 000 m和2 000 m等3个台站间距的空间相干系数,并对3个距离的所有计算值进行了拟合,得到了第一组拟合参数;另外又增加计算了d等于400 m,800 m和1 200 m等3个台站间距的空间相干系数,并对所有6个距离的计算值进行了拟合,得到了第二组拟合参数。结果表明,第二组拟合参数的离散性优于第一组拟合参数,且根据第二组拟合参数计算得到的相干系数曲线更合理。因此建议,当采用统计方法获得地震动空间相干函数时,应尽量多地考虑不同距离台站对的强震记录。
Abstract:
When fitting the coherence function of ground motion, we often encounter the problem that the distance d between stations is too litter. This paper mainly studied how the discrepancy of the distance d between stations exerts influence on the fitting parameters of the coherence function model. Taking the No.45 earthquake’s horizontal component acceleration as the analysis object, the author calculates the value of lagged coherency when d is 200 m, 1 000 m,and 2 000 m,all the calculated values of the three distances were fitted and the first set of fitting parameters was obtained.Similarly,the calculated values of all six distances were fitted and the second set of fitting parameters was obtained.The results show that the dispersion of the second set of fitting parameters is superior to the first set of fitting parameters and the coherence coefficient curve calculated based on the second set of fitting parameters is more reasonable. Therefore, when statistical methods are used to obtain coherent functions,the strong motion records at different stations should be considered as much as possible.

参考文献/References:

[1] Kanai K. Engineering seismology[M]. Tokyo, Japan, University of Tokyo press, 1983.
[2] Somerville P G, Mclaren J P, Saikia C K.et al. Site-specific estimation of spatial incoherence of strong ground motion[J]. Geotechnical Special Publication, 1988:188-202.
[3] Somerville P G, Mclaren J P, Sen M K, et al. The influence of site condition on the spatial incoherence of ground motions[J]. Structure Safety 1991, 10(1-3):1-14.
[4] Kiureghian A D. A coherency model for spatially varying ground motions[J]. Earthquake Engineering and Structural Dynamics, 1996, 25(1):99-111.
[5] Abrahamson N A. Spatial variation of multiple support inputs[C]//Proceedings of the 1st U. S. Seminar on Seismic Evaluation and Retrofit of Steel Bridges. A Caltrans and University of California at Berkeley Seminar, San Francisco, CA, 1993.
[6] Hao H. Effects of spatial variation of ground motions on large multiply-supported structures[R]. Report No. UCB-EERC-89-07, University of California, Berkeley, 1989.
[7] Hao H. Arch responses to correlated multiple excitations[J]. Earthquake Engineering & Structural Dynamics, 1993, 22(5):389-404.
[8] Harichandran R S, Vanmarcke E. Stochastic variation of earthquake ground motion in space and time[J]. Journal of Engineering Mechanics, ASCE, 1986, 112(2):154-174.
[9] Loh C H, Lin S G. Directionality and simulation in spatial variation of seismic waves[J]. Engineering Structures, 1990, 12(2):134-143.
[10] 曲铁军, 王君杰, 王前信. 空间变化的地震动功率谱的实用模型[J].地震学报, 1996, 18(1):55-62. QU Tiejun, WANG Junjie, WANG Qianxing.Apractical model for the power spectrum of spatial variant ground motion[J].Acta Seismologica Sinica, 1996, 18(1):55-62.(in Chinese)
[11] 刘先明, 叶继红, 李爱群. 竖向地震动场的空间相干函数模型[J]. 工程力学, 2004, 21(2):140-144. LIU Xianming, YE Jihong, LI Aiqun. Space coherency function model of vertical ground motion[J]. Engineering Mechanics, 2004, 21(2):140-144.(in Chinese)
[12] 李英民, 吴哲骞, 陈辉国. 地震动的空间变化特性分析与修正相干模型[J].振动与冲击, 2013, 32(2):164-170. LI Yingming, WU Zheqian, CHEN Huiguo. Analysis and modeling for characteristics of spatially varying ground motion[J].Journal of Vibration and Shock, 2013, 32(2):164-170.(in Chinese)
[13] Abrahamson N A, Bolt B A, Darragh R B, et al. The SMART I accelerograph array (1980-1987):A review[J]. Earthquake Spectra, 1987, 3(2):263-287.
[14] Abrahamson N A, Schneider J F, Stepp J C. Empirical spatial coherency functions for application to soil-structure Interaction analyses[J]. Earthquake Spectra, 1991, 7(1):1-27.
[15] Zerva A, Beck J L. Identification of parametric ground motion random fields from spatially recorded data[J]. Earthquake Engineering and Structural Dynamics, 2003, 32:771-791, 2003.
[16] Oliveira C S. Variability of strong ground motion char-acteristics obtained in SMART-1 array[C]//Proc. 12th Regional Seminar on Earthquake Engineering, Halkidiki, Greece, 1985.

相似文献/References:

[1]丁海平,朱越,于彦彦.基于能量的相干函数有效频段范围的选取[J].地震工程与工程振动,2019,39(02):035.[doi:10.13197/j.eeev.2019.02.35.dinghp.005]
 DING Haiping,ZHU Yue,YU Yanyan.Selection of effective frequency range for coherencey function based on energy method[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2019,39(03):035.[doi:10.13197/j.eeev.2019.02.35.dinghp.005]
[2]丁海平,朱越,李昕.基于AR模型的相干函数有效频段范围的确定[J].地震工程与工程振动,2020,40(01):030.[doi:10.13197/j.eeev.2020.01.30.dinghp.004]
 DING Haiping,ZHU Yue,LI Xin.Determination of effective frequency range for coherency function based on autoregressive model[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2020,40(03):030.[doi:10.13197/j.eeev.2020.01.30.dinghp.004]
[3]丁海平,李昕.参数和非参数方法计算相干函数的比较[J].地震工程与工程振动,2020,40(03):011.[doi:10.13197/j.eeev.2020.03.11.dinghp.002]
 DING Haiping,LI Xin.Comparison of parametric and non-parametric methods for calculating coherence function[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2020,40(03):011.[doi:10.13197/j.eeev.2020.03.11.dinghp.002]

备注/Memo

备注/Memo:
收稿日期:2017-09-10;改回日期:2017-12-05。
基金项目:国家自然科学基金项目(51678383)
作者简介:饶威波(1993-),男,硕士,研究生,主要从事地震工程研究.E-mail:m18806136456@163.com
通讯作者:丁海平(1966-),男,教授,主要从事地震工程和防灾减灾工程研究.E-mail:hpding@126.com
更新日期/Last Update: 2018-08-18