[1]侯钢领,王炳媛,李孟,等.AP1000核电站屏蔽厂房BIS-TMD新型结构及其抗震性能研究[J].地震工程与工程振动,2018,(04):132-142.[doi:10.13197/j.eeev.2018.04.132.hougl.020]
 HOU Gangling,WANG Bingyuan,LI Meng,et al.BIS-TMD shield building for AP 1 000 nuclear power plants and its seismic performance studies[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2018,(04):132-142.[doi:10.13197/j.eeev.2018.04.132.hougl.020]
点击复制

AP1000核电站屏蔽厂房BIS-TMD新型结构及其抗震性能研究
分享到:

《地震工程与工程振动》[ISSN:/CN:]

卷:
期数:
2018年04期
页码:
132-142
栏目:
论文
出版日期:
2018-10-28

文章信息/Info

Title:
BIS-TMD shield building for AP 1 000 nuclear power plants and its seismic performance studies
作者:
侯钢领1 王炳媛1 李孟1 宋天舒1 潘蓉2
1. 哈尔滨工程大学 航天与建筑工程学院, 黑龙江 哈尔滨 150001;
2. 核与辐射安全中心, 北京 100082
Author(s):
HOU Gangling1 WANG Bingyuan1 LI Meng1 SONG Tianshu1 PAN Rong2
1. College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin 150001, China;
2. Nuclear and Radiation Safety Center, Beijing 100082, China
关键词:
核电站抗震基础隔震调频质量阻尼结构基础隔震-调频质量阻尼结构非能动安全理念
Keywords:
seismic resistance of nuclear power plantsbase isolationtuned mass damping structurebase isolation-Tuned mass damping structurepassive safety concept
分类号:
TU352
DOI:
10.13197/j.eeev.2018.04.132.hougl.020
摘要:
针对核电站传统结构在服役期间可能出现的地震破坏,应用建筑结构隔震减震技术,将AP 1000核电站的非能动安全理念推广到结构抗震领域,提出了屏蔽厂房基础隔震-调频质量阻尼(BIS-TMD)新型结构,大幅度地提高了屏蔽厂房的抗震安全。基于屏蔽厂房各部分的功能要求,修改了屏蔽厂房各部分的连接方式,在增加附加质量很小的情况下,实现了本新型结构。基于AP 1 000基础隔震结构的研究成果,构建了本新型结构的参数优化模型,给出了TMD支座的选型参数,研究了本新型结构的减震机理。通过与传统结构、基础-隔震结构和TMD结构等比较,表明了本新型结构综合了BIS和TMD的优点,能够很好地抵御地震大小和频谱、重力水箱水质量、TMD支座和BIS支座力学性能等因素变化对减震效果的影响;具有显著的减震效果,稳定的抗震鲁棒性和良好的场地适用性,能够很好地满足核电站抗震安全的要求。
Abstract:
For seismic damage that may occur during the service of traditional structures of nuclear power plants, seismic isolation technology of building structures is used to promote the passive safety concept of AP 1 000 NPPs to the field of structural earthquake resistance, and to propose a new type of structure used for shield building which is called base isolation-Tuned mass damping (BIS-TMD).This new structure has greatly increased the seismic safety of the shield building. Based on the functional requirements of each part of the shield building, the connection method of each part of the shield building was modified, and this new type of structure was realized with a small additional quality. Due to the research results of the base-isolated structure of AP 1000, a parameter optimization model of the new structure was constructed, the selection parameters of the TMD support were given, and the damping mechanism of the new structure was studied. Comparing with the traditional structure, the BIS structure and the TMD structure, it indicates that this new structure combines the advantages of BIS structure and TMD structure, and can well resist the changes of the size and spectrum of earthquake, water quality of gravity tanks, and the mechanical properties of TMD support and BIS support on the damping effect. Meanwhile, this new structure has significant absorption effect, stable seismic robustness and good site suitability, and can well meet the seismic safety requirements of nuclear power plants.

参考文献/References:

[1] Schulz T L. Westinghouse AP1000 advanced passive plant[J]. Nuclear Engineering and Design, 2006,236(14-16):1547-1557.
[2] Shumuta Y. Damage and restoration of electric power system due to the 2011 earthquake off the Pacific Coast of Tōhoku-effects of a damage estimation system for electric power distribution equipment[C]//International Efforts in Lifeline Earthquake Engineering, 2014,12,27.
[3] American Society of Civil Engineers. Seismic analysis of safety-related nuclear structures, ASCE 4-98[S],1999.
[4] 日本建筑学会. 隔震结构设计[M]. 北京:地震出版社,2006. Japanese Society of Architecture. Seismic structural design[M]. Beijing:Seismological Press, 2006. (in Chinese)
[5] Xie LL, Zhai C H. A prospective study on applicability of base isolation in nuclear power plant[J] Journal of Earthquake Vibration and Engineering Vibration. 2012, 32(1):1-10.
[6] Hamilton D H. Seismic hazard to the Diablo Canyon nuclear power plant, Coastal Central California; a realistic assessment needed[C]//Agu Fall Meeting, San Francisco, CA, United States,2014.
[7] Forni M. Guidelines proposal for seismic isolation of NPP[R]. Report Ricerca di Sistema Elettrico, Settembre,2010.
[8] Forni M, Poggianti A, Dusi A. Seismic isolation of NPP[C]. 15th World Conference on Earthquake Engineering, Lisbon, Portugal,2012.
[9] Whittaker AS, Kumar M. Seismic isolation of nuclear plants[J]. Nuclear Engineering and Technology, 2014, 45(5):569-580.
[10] 夏祖讽. 核电厂的抗震设计输入及AP1000核岛隔震课题简介[J]. 中国工程科学, 2013, 15(4):52-57. XIA Zufeng. Seismic design input of nuclear power plant and introduction of AP1000 nuclear island isolation project subject[J]. China Engineering Science, 2013,15(4):52-57.(in Chinese)
[11] Sayed M A, Go S, Cho S G, et al. Seismic responses of base-isolated nuclear power plant structures considering spatially varying ground motions[J]. Structural Engineering and Mechanics, 2015, 54(1):169-188.
[12] Yoo B, Lee J H, Koo G H, et al. Seismic base isolation technologies for Korea advanced liquid metal reactor[J], Nuclear engineering and design, 2000,199(1):125-142.
[13] Iuliis D M, Petti L,Palazzo B. Combined control strategy base isolation and tuned mass damper:an effectiveness benchmark base isolated structure[C]//14th World Conference on Earthquake Engineering, Beijing, China, 2008.
[14] Taniguchi T, Armen D K, Melkumyan M. Effect of tuned mass damper on displacement demand of base-isolated structures[J]. Engineering Structures,2008,30(12):3478-3488.
[15] Krishnamoorthy,Shetty K K. Seismic response control in base isolated structure using tuned mass dampers[J]. Advance in Vibration Engineering, 2008,7(3):239-252.
[16] Hoanga N, Fujinoa Y, Warnitchai P. Optimal tuned mass damper for seismic applications and practical design formulas[J]. Engineering Structures 30(2008) 707-715.
[17] Chen J Y, Zhao C F, Xu Q, et al. Seismic analysis and evaluation of the base isolation system in AP1000 NI under SSE loading[J]. Nuclear Engineering and Design, 2014,278(7):117-133.
[18] Haroun M A. Vibration studies and tests of liquid storage tanks[J]. Earthquake Engineering and Structural Dynamics,1983,11:179-206.
[19] Lu D G, Liu Y, Zeng X J. AP1000 shield building dynamic response for different water levels of PCCWST subjected to seismic loading considering FSI[J]. Science and Technology of Nuclear Installations, 2016,29(2):1-8.
[20] Shrimali M K, Jangid R S. Earthquake response of isolated elevated liquid storage steel tanks[J]. Journal of Constructional Steel Research, 2003,59(10):1267-1288.
[21] Lee D S, Liu M L, Hung T C, et al. Optimal structural analysis with associated passive heat removal for AP1000 shield building[J]. Applied Thermal Engineering, 2013, 50(1):207-216.
[22] Jangid R S. Optimal design of base-isolators in multi-storey buildings[J]. Computers and Structures, 2004, 82(23):2199-2209.
[23] Desilva CW. Vibration damping, control and design[M]. Crc Press/Taylor & Francis Group,London, UK, 2007.
[24] Pacific Earthquake Engineering Research Center (PEER). PEER Ground Motion Database (2007-03-08). http://peer.berkeley.edu/smcat/index.html.
[25] GB50011-2010建筑抗震设计规范[S]. 北京:中国建筑工业出版社,2010. GB50011-2010 Code for Seismic Design of Buildings[S]. Beijing:China Architecture and Building Press,2010.(in Chinese)

相似文献/References:

[1]李冰,李向真,向伟明.基于隔震结构Benchmark模型的隔震层刚度分布分析研究[J].地震工程与工程振动,2012,(05):127.
 LI Bing,LI Xiangzhen,XIANG Weiming.Analysis of stiffness distribution of isolation layer based on base-isolated Benchmark building[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2012,(04):127.
[2]苏键,温留汉·黑沙,周福霖.隔震层竖向刚度对高层基础隔震结构的影响[J].地震工程与工程振动,2010,(03):166.
 SU Jian,Wen Liuhan·HEI SHA,ZHOU Fulin.Effects of vertical stiffness of isolation layer on high-rise base isolated buildings[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2010,(04):166.
[3]刘伟兵,孙建刚,崔利富,等.考虑SSI效应的15×10m储罐基础隔震数值仿真分析[J].地震工程与工程振动,2012,(06):153.
 LIU Weibing,SUN Jiangang,CUI Lifu,et al.Finite element analysis of 15×10m storage tanks with base isolation considering soil-structure interaction (SSI)[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2012,(04):153.
[4]王向楠,孙建刚,崔利富,等.考虑桩土-隔震层-罐体相互作用的隔震储罐地震响应分析[J].地震工程与工程振动,2013,04(03):225.
 WANG Xiangnan,SUN Jiangang,CUI Lifu,et al.Seismic response analysis of isolated tank considering pile-soil-isolation layer-tank interaction[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2013,04(04):225.
[5]夏昌.福建省防震减灾指挥中心大厦基础隔震技术研究[J].地震工程与工程振动,2007,(01):147.
 Xia Chang.Research on base-isolation structure of Fujian Earthquake Disaster Mitigation Center[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2007,(04):147.
[6]叶献国,谢一可,李康宁.基础隔震结构在侧向碰撞下的地震反应分析[J].地震工程与工程振动,2008,(04):161.
 YE Xianguo,XIE Yike,LI Kangning.Earthquake response analysis of base-isolated structure considering side impact[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2008,(04):161.
[7]孙建刚,崔利富,王向楠.桩土影响下LNG储罐基础隔震数值模拟分析[J].地震工程与工程振动,2013,04(06):102.
 SUN Jiangang,CUI Lifu,WANG Xiangnan.Seismic performance numerical simulation analysis of LNG storage tank with filler wall[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2013,04(04):102.
[8]祁皑,林于东.改进的基础隔震结构地震作用简化计算方法[J].地震工程与工程振动,2006,(01):152.
 Qi Ai,Lin Yudong.An improved simplified method for seismic action design of base-isolation buildings[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2006,(04):152.
[9]文波,张俊发,刘云贺.多向地震作用下隔震配电建筑物的非线性动力反应分析[J].地震工程与工程振动,2006,(01):158.
 Wen Bo,Zhang Junfa,Liu Yunhe.Nonlinear dynamical response analysis of isolated building subjected to multiple-dimensional earthquake action[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2006,(04):158.
[10]王兴国,张松,苏幼坡.单层FPS隔震结构的平移-扭转耦合性能分析[J].地震工程与工程振动,2006,(03):203.
 Wang Xingguo,Zhang Song,Su Youpo.Analysis of translation-torsion coupling seismic response of one-story FPS-based structures[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2006,(04):203.

备注/Memo

备注/Memo:
收稿日期:2018-03-15;改回日期:2018-05-19。
基金项目:国家科技重大专项(2014bak14b05)
作者简介:侯钢领(1973-),男,副教授,博士,主要从事结构可靠度及结构抗震、核电站新型减震结构研究.E-mail:hhhgl@sina.com
更新日期/Last Update: 1900-01-01