[1]郭阳照,吴体,杨琼,等.新型扇形盘式消能器的设计原理与减震性能分析[J].地震工程与工程振动,2018,(04):143-149.[doi:10.13197/j.eeev.2018.04.143.guoyz.021]
 GUO Yangzhao,WU Ti,YANG Qiong,et al.Design principle and seismic performance analysis of new-type fanshaped disc-type energy dissipator[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2018,(04):143-149.[doi:10.13197/j.eeev.2018.04.143.guoyz.021]
点击复制

新型扇形盘式消能器的设计原理与减震性能分析
分享到:

《地震工程与工程振动》[ISSN:/CN:]

卷:
期数:
2018年04期
页码:
143-149
栏目:
论文
出版日期:
2018-10-28

文章信息/Info

Title:
Design principle and seismic performance analysis of new-type fanshaped disc-type energy dissipator
作者:
郭阳照1 吴体1 杨琼1 杨成2
1. 四川省建筑科学研究院, 四川 成都 610081;
2. 西南交通大学 土木工程学院, 四川 成都 610083
Author(s):
GUO Yangzhao1 WU Ti1 YANG Qiong1 YANG Cheng2
1. Sichuan Institute of Building Research, Chengdu 610081, China;
2. School of Civil Engineering, Southwest Jiaotong University, Guangzhou 610083, China
关键词:
扇形盘式消能器减震装置设计原理减震性能
Keywords:
fanshaped disc-type energy dissipatorseismic reduction devicedesign principleseismic performance
分类号:
TU317.1;TU375.4
DOI:
10.13197/j.eeev.2018.04.143.guoyz.021
摘要:
提出了新型扇形盘式消能器(FDED),阐明其设计原理、特点及关键力学参数的计算理论,设计传动头构造方案不同的FDED模型,运用数值仿真方法对FDED模型在循环加载作用下的受力性能及位移和应力分布等进行分析,探究FDED的减震性能及其传动头构造的影响,结果表明:FDED设计原理可行,减震机理明确,其转盘式的构造可起到有效的位移放大效果,使得消能器在小激励位移下即可发挥耗能作用;FDED耗能性能稳定,耗能能力强,等效黏滞阻尼系数可达54%以上;FDED的恢复力特性具有明显的双线性特性,屈服后刚度主要由叠层橡胶提供,较初始刚度显著降低;传动头的构造方案对FDED的受力和工作机制的实现有重要影响。带过渡块圆形截面传动头构造方案可显著缓解应力集中现象,同时避免方形截面传动头构造方案对转盘转动造成卡停的不良情况,为较优的传动头构造方案。
Abstract:
A new-type Fanshaped Disc-type Energy Dissipator, FDED was put forward. The working mechanism, characteristics, and the key mechanical parameters were illustrated. FDED models with different driving head construction were designed. Numerical simulation method was used for analyzing the energy dissipation performance, displacement and stress distribution under cyclic loading. The energy dissipation performance of FDED and the influence of the driving head structure was discussed. The results show that, the design principle of FDED is of feasibility and the working mechanism is clear. The fanshaped construction enable FDED to amplify the displacement amplification, which makes FDED dissipate energy under small displacement under outer excitation. The energy dissipation performance of FDED is stable. The equivalent viscous damping coefficient of FDED reach over 54%. The resilience characteristic of FDED is bilinear. The post-yield stiffness is mainly provided by the laminated rubber, which is much smaller than the initial stiffness. The realization of the working mechanism and performance is mainly affected by the construction of driving head. The circular cross-section driving head construction with transition block enable alleviate the stress concentraion phenomenon. Simultaneously, this driving head construction avoid the undesirable situation that the turnplate may stop rotating resulted from the square cross-section driving head construction. Consequently, the circular cross-section driving head construction is a better construction.

参考文献/References:

[1] Yao J T P. Concept of Structural Control[J]. Journal of the Structural Division, 1972, 98(7):1567-1574.
[2] 周云.粘滞阻尼减震结构设计[M].武汉:武汉理工大学出版社,2006. ZHOU Yun. Design of viscous damped seismic structure[M].Wuhan:Wuhan University of Technology Press, 2006.(in Chinese)
[3] LEE D,TAYLOR D P.Viscous damper development and future trends[J]. Structural Design of Tall & Special Buildings, 2001,10(5):311-320.
[4] 翁大根,张超,吕西林,等.附加黏滞阻尼器减震结构实用设计方法研究[J]. 振动与冲击, 2012,31(21):80-88. WENG Dagen,ZHANG Chao, LV Xilin, et al. Practical design procedure for a energy-dissipated structure with viscous dampers[J]. Journal of Vibration and Shock, 2012,31(21):801-88.(in Chinese)
[5] ZHANG R,SOONG T T. Seismic design of viscoelastic dampers for structural applications[J]. Journal of Structural Engineering, 1992,118(5):1375-1392.
[6] K C Chang, T T Soong, S T Oh, M L Lai. Seismic behavior of steel frame with added viscoelastic dampers[J]. Journal of Structures Engineering,1995,121.
[7] Constantin Christopoulos, Michael Montgomery. Viscoelastic coupling dampers (VCDs) for enhanced wind and seismic performance of high-rise buildings[J]. Earthquake Engineering and Structural Dynamics,2013,42(15):2217-2233.
[8] Yang S B, Song J X, Pan W. Application of frictional energy dissipation brace in seismic strengthening[J].Applied Mechanics and Materials,2013,405:1969-1973.
[9] 周云.摩擦耗能减震结构设计[M].武汉:武汉理工大学出版社,2006. ZHOU Yun. Design of frictional energy dissipation seismic structure[M].Wuhan:Wuhan University of Technology Press, 2006.(in Chinese)
[10] Deng K, Pan P, Sun J, et al. Shape optimization design of steel shear panel dampers[J]. Journal of Constructional Steel Research, 2014, 99(8):187-193.
[11] 周云.金属耗能减震结构设计[M].武汉:武汉理工大学出版社, 2006. ZHOU Yun. Design of metal energy dissipation seismic structure[M].Wuhan:Wuhan University of Technology Press, 2006.(in Chinese)
[12] JGJ101-2015建筑抗震试验方法规程[S].北京:中国建筑工业出版社,2015. JGJ 101-2015 Specification of Testing Method for Earthquake Resistant Buildings[S].Beijing:China Architecture & Building Press 2015.(in Chinese)

备注/Memo

备注/Memo:
收稿日期:2018-03-19;改回日期:2018-05-21。
基金项目:国家重点研发计划资助(2017YFC0703600);四川省科技支撑计划项目(2016FZ0014);住房与城乡建设部科技项目(2016-K6-006)
作者简介:郭阳照(1983-),男,高级工程师,博士,主要从事建筑抗震与减振控制方面研究.E-mail:gyzh83@163.com
更新日期/Last Update: 1900-01-01