[1]王昊,翁大根,罗超,等.基础隔震结构不确定参数敏感性分析[J].地震工程与工程振动,2018,(04):186-195.[doi:10.13197/j.eeev.2018.04.186.wangh.027]
 WANG Hao,WENG Dagen,LUO Chao,et al.Uncertainty parameters sensitivity analysis of base-isolated structures[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2018,(04):186-195.[doi:10.13197/j.eeev.2018.04.186.wangh.027]
点击复制

基础隔震结构不确定参数敏感性分析
分享到:

《地震工程与工程振动》[ISSN:/CN:]

卷:
期数:
2018年04期
页码:
186-195
栏目:
论文
出版日期:
2018-10-28

文章信息/Info

Title:
Uncertainty parameters sensitivity analysis of base-isolated structures
作者:
王昊1 翁大根3 罗超1 宋佳宁1
1. 石家庄铁道大学 土木工程学院, 河北 石家庄 050043;
2. 石家庄铁道大学 大型基础设施防灾减灾协同创新中心, 河北 石家庄 050043;
3. 同济大学 土木工程防灾减灾国家重点实验室, 上海 200092
Author(s):
WANG Hao1 WENG Dagen3 LUO Chao1 SONG Jianing1
1. School of Civil Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China;
2. Cooperative Innovation Center of Disaster Prevention and Mitigation for Large Infrastructure in Hebei province(Shijiazhuang Tiedao University), Shijiazhuang 050043, China;
3. State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China
关键词:
基础隔震参数敏感性响应面法龙卷风图随机性
Keywords:
base isolationuncertainty parameters sensitivityresponse surface methodtornado diagramrandomness
分类号:
TU352.1
DOI:
10.13197/j.eeev.2018.04.186.wangh.027
摘要:
隔震结构系统参数的不确定性和地震的随机性可能会导致结构响应意想不到的偏移,导致大幅减少安全性评价的准确度和精密度,因此有必要探究隔震支座的不确定性因素对结构响应的影响。本文着重研究基础隔震钢筋混凝土结构的不确定性因素,包括结构的不确定性和地震作用的不确定性。采用龙卷风图对结构不确定参数进行敏感性分析,并对比隔震与非隔震结构的参数敏感性;提出基于我国国情的双响应面法,利用响应面模型同时考察地震动和基础隔震结构的不确定性对地震响应的影响。结果表明:隔震技术可以减小结构不确定性的影响并且地震动的不确定性对结构的影响大大超过结构本身的不确定性。
Abstract:
As the randomness of the earthquake and the inherent uncertainty of the structure, unexpected shifts might occur in the structure response, leading to a significant reduction in accuracy and precision of safety evaluation. Therefore, it is necessary to explore the influence of the uncertainty inherent in isolators on the structural response. This paper focuses on the study of the uncertainty of the base-isolated reinforced concrete structure, including the structural uncertainty and the stochastic earthquake. The parameter sensitivity of the random variables is analyzed by using tornado diagrams and compared for both the base-isolated and non-isolated structure. This paper proposes a dual response surface method based on China’s national conditions, and uses the response surface model to investigate the impact of the uncertainty within in earthquake and structure on earthquake response. Results show that the base-isolation technology can reduce the influence of the uncertainty within structure and the influence of the randomness within the ground motion considerably exceeds the uncertainty within the structure.

参考文献/References:

[1] Wang H, Weng D, Lu X, et al. Life-cycle cost assessment of seismically base-isolated structures in nuclear power plants[J]. Nuclear Engineering and Design. 2013, 262:429-434.
[2] Han R, Li Y, van de Lindt J. Seismic risk of base isolated non-ductile reinforced concrete buildings considering uncertainties and mainshock-aftershock sequences[J]. Structural Safety. 2014, 50:39-56.
[3] Mishra S K, Chakraborty S. Performance of a base-isolated building with system parameter uncertainty subjected to a stochastic earthquake[J]. International Journal of Acoustics and Vibration. 2013, 18(1):7-19.
[4] Castaldo P, Palazzo B, Della Vecchia P. Seismic reliability of base-isolated structures with friction pendulum bearings[J]. Engineering Structures. 2015, 95:80-93.
[5] Saha S K, Matsagar V, Chakraborty S. Uncertainty quantification and seismic fragility of base-isolated liquid storage tanks using response surface models[J]. Probabilistic Engineering Mechanics. 2016, 43:20-35.
[6] Perotti F, Domaneschi M, De Grandis S. The numerical computation of seismic fragility of base-isolated Nuclear Power Plants buildings[J]. Nuclear Engineering and Design. 2013, 262:189-200.
[7] 刘娟. 高层隔震建筑基于性态的抗震设防及地震易损性分析[D]. 广州:广州大学, 2014. LIU Juan. Performace-based seismic design and seismic vulnerability analysis for isolated high-rise buildings[D]. Guangzhou:Guangzhou University, 2014. (in Chinese)
[8] 李奎明. 钢筋混凝土短肢剪力墙结构试验研究与非线性随机演化分析[D]. 上海:同济大学, 2007. LI Kuiming.Experiment research and non-linear stochastic evolution analysis of RC short-leg shear walls[D]. Shanghai:Tongji University, 2007. (in Chinese)
[9] GB 50010-2010. 混凝土结构设计规范[S]. 北京:中国建筑工业出版社, 2010. GB 50010-2010. Code for Design of Concrete Structures[S]. Beijing:Building Industry Press of China,2010. (in Chinese)
[10] 易伟建,何肖煌灿. 中美两国混凝土结构设计规范可靠度比较[J]. 建筑结构. 2017, 47(4):1-6. YI Weijian, HE Xiaohuangcan. Comparison of reliability provisions in Chinese and American codes on structural concrete design[J]. Building Structure. 2017, 47(4):1-6. (in Chinese)
[11] Celik O C, Ellingwood B R. Seismic fragilities for non-ductile reinforced concrete frames-Role of aleatoric and epistemic uncertainties[J]. Structural Safety. 2010, 32(1):1-12.
[12] Y K Wen B R E, D Veneziano A J B. Uncertainty modeling in earthquake engineering[R]. Urbana, IL:MAE Center, 2003.
[13] Ellingwood B, Galambus T V. Development of a probability based Load criteria for american national standard A58, building code requirements for minimum design loads in buildings and other structures[M]. Washington, D.C.:National Bureau of Standards, 1980.
[14] Pan Y, Agrawal A K, Ghosn M. Seismic fragility of continuous steel highway bridges in New York state[J]. Journal of Bridge Engineering. 2007, 12(6):689-699.
[15] Mahan M, Unanwa C. Statistical Analysis of Concrete Compressive Strengths for California Highway Bridges[J]. Journal of Performance of Constructed Facilities. 2014, 28(1):157-167.
[16] Macgregor J G. Safety and limit states design for reinforced concrete[J]. CAN. J. CIV. ENG. 1976, 3:484.
[17] 刘扬. 混凝土斜拉桥施工期的时变可靠性研究[D]. 长沙:湖南大学, 2005. LIU Yang. The research of time-dependent reliability of concrete cable-stayed bridges during construction[D]. Changsha:Hunan University, 2005. (in Chinese)
[18] 吴文朋. 考虑不确定性的钢筋混凝土桥梁地震易损性研究[D]. 长沙:湖南大学, 2016. WU Wenpeng. Seismic fragility of reinforced concrete bridges with consideration of various sources of uncertainty.[D]. Changsha:Hunan University, 2016. (in Chinese)
[19] 李奎明,李杰. 双连梁短肢剪力墙结构非线性随机演化分析[J]. 同济大学学报:自然科学版. 2009, 37(04):432-439. LI Kuiming, LI Jie. Non-linear stochastic evolution analysis of short-leg shear wall with dual binding beams[J]. Journal of Tongji University:Natural Science, 2009, 37(04):432-439. (in Chinese)
[20] Jung J K P H. A statistical analysis of the modulus of elasticity and compressive strength of concrete C45/55 for pre-stressed precast beams[J]. Journal of Civil Engineering and Architecture. 2012, 6(11):1571-1576.
[21] GB 50068-2001建筑结构设计统一标准[S]. 北京:中国建筑工业出版社, 2001. GB 50068-2001 Unified Standard for Reliability Design of Building Structures[S]. Beijing:Building Industry Press of China,2001. (in Chinese)
[22] Nowak A S. Calibration of LRFD bridge code[J]. Journal of Structural Engineering-ASCE. 1995, 121(8):1245-1251.
[23] Constantinou M C, Multidisciplinary C F E E. LRFD-based analysis and design procedures for bridge bearings and seismic isolators[M]. Buffalo, NY:MCEER, 2011.
[24] 邹勤. 近海隔震桥梁基于性态的抗震设防标准易损性分析及应用[D]. 广州:广州大学, 2014. ZOU Qin. Performace-based seismic design criteria, vulnerability analysis and application for offshore isolated bridge[D]. Guangzhou:Guangzhou University, 2014. (in Chinese)
[25] GB 20688.3-2006橡胶支座-第3部分建筑隔震橡胶支座[S]. 北京:中国标准出版社, 2006. GB 20688.3-2006 Rubber bearings-Part 3:Elastomeric Seismic-Protection Isolators for Buildings[S]. Beijing:Standards Press of China, 2006. (in Chinese)
[26] Towashiraporn P. Building seismic fragilities using response surface metamodels[D]. Atlanta, GA:Georgia Institute of Technology, 2004.
[27] GB5001-2010建筑抗震设计规范[S]. 北京:中国建筑工业出版社, 2010. GB5001-2010 Gode for Seismic Design of Buildings[S]. Beijing:Building Industry Press of China, 2010.(in Chinese)
[28] Simon J, Bracci J M, Gardoni P. Seismic response and fragility of deteriorated reinforced concrete bridges[J]. Journal of Structural Engineering. 2010, 136(10):1273-1281.
[29] 姜维. 连续梁桥的地震易损性分析[D]. 武汉:华中科技大学, 2012. JIA Wei. Fragility analysis of RC-continuous highway bridge[D]. Wuhan:Huazhong University of Science and Technology, 2012. (in Chinese)
[30] Rezaeian S, Bozorgnia Y, Idriss I M, et al. Damping scaling factors for elastic response spectra for shallow crustal earthquakes in active tectonic regions[J]. Earthquake Spectra. 2014, 30(2):939-963.
[31] Padgett J E, Nielson B G, Desroches R. Selection of optimal intensity measures in probabilistic seismic demand models of highway bridge portfolios[J]. Earthquake Engineering & Structural Dynamics. 2008, 37(5):711-725.
[32] Saha S K, Matsagar V A, Jain A K. Seismic fragility of base-isolated water storage tanks under non-stationary earthquakes[J]. Bulletin of Earthquake Engineering. 2016, 14(4):1153-1175.
[33] 李杨. 近场地震作用下钢筋混凝土桥梁的地震易损性分析[D]. 天津:天津大学, 2014. LI Yang. Seismic vulnerability analysis of reinforced concrete bridges subjected to near-fault ground motion[D]. Tianjin:Tianjin University, 2014. (in Chinese)

相似文献/References:

[1]李冰,李向真,向伟明.基于隔震结构Benchmark模型的隔震层刚度分布分析研究[J].地震工程与工程振动,2012,(05):127.
 LI Bing,LI Xiangzhen,XIANG Weiming.Analysis of stiffness distribution of isolation layer based on base-isolated Benchmark building[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2012,(04):127.
[2]苏键,温留汉·黑沙,周福霖.隔震层竖向刚度对高层基础隔震结构的影响[J].地震工程与工程振动,2010,(03):166.
 SU Jian,Wen Liuhan·HEI SHA,ZHOU Fulin.Effects of vertical stiffness of isolation layer on high-rise base isolated buildings[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2010,(04):166.
[3]刘伟兵,孙建刚,崔利富,等.考虑SSI效应的15×10m储罐基础隔震数值仿真分析[J].地震工程与工程振动,2012,(06):153.
 LIU Weibing,SUN Jiangang,CUI Lifu,et al.Finite element analysis of 15×10m storage tanks with base isolation considering soil-structure interaction (SSI)[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2012,(04):153.
[4]王向楠,孙建刚,崔利富,等.考虑桩土-隔震层-罐体相互作用的隔震储罐地震响应分析[J].地震工程与工程振动,2013,04(03):225.
 WANG Xiangnan,SUN Jiangang,CUI Lifu,et al.Seismic response analysis of isolated tank considering pile-soil-isolation layer-tank interaction[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2013,04(04):225.
[5]夏昌.福建省防震减灾指挥中心大厦基础隔震技术研究[J].地震工程与工程振动,2007,(01):147.
 Xia Chang.Research on base-isolation structure of Fujian Earthquake Disaster Mitigation Center[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2007,(04):147.
[6]叶献国,谢一可,李康宁.基础隔震结构在侧向碰撞下的地震反应分析[J].地震工程与工程振动,2008,(04):161.
 YE Xianguo,XIE Yike,LI Kangning.Earthquake response analysis of base-isolated structure considering side impact[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2008,(04):161.
[7]孙建刚,崔利富,王向楠.桩土影响下LNG储罐基础隔震数值模拟分析[J].地震工程与工程振动,2013,04(06):102.
 SUN Jiangang,CUI Lifu,WANG Xiangnan.Seismic performance numerical simulation analysis of LNG storage tank with filler wall[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2013,04(04):102.
[8]祁皑,林于东.改进的基础隔震结构地震作用简化计算方法[J].地震工程与工程振动,2006,(01):152.
 Qi Ai,Lin Yudong.An improved simplified method for seismic action design of base-isolation buildings[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2006,(04):152.
[9]文波,张俊发,刘云贺.多向地震作用下隔震配电建筑物的非线性动力反应分析[J].地震工程与工程振动,2006,(01):158.
 Wen Bo,Zhang Junfa,Liu Yunhe.Nonlinear dynamical response analysis of isolated building subjected to multiple-dimensional earthquake action[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2006,(04):158.
[10]王兴国,张松,苏幼坡.单层FPS隔震结构的平移-扭转耦合性能分析[J].地震工程与工程振动,2006,(03):203.
 Wang Xingguo,Zhang Song,Su Youpo.Analysis of translation-torsion coupling seismic response of one-story FPS-based structures[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2006,(04):203.

备注/Memo

备注/Memo:
收稿日期:2018-03-07;改回日期:2018-05-09。
作者简介:王昊(1989-),女,讲师,博士,主要从事消能减震及隔震建筑分析研究.E-mail:303_wh@tongji.edu.cn
更新日期/Last Update: 1900-01-01