[1]杜修力,周雨龙,韩强,等.摇摆桥墩的研究综述[J].地震工程与工程振动,2018,(05):001-11.[doi:10.13197/j.eeev.2018.05.1.duxl.001]
 DU Xiuli,ZHOU Yulong,HAN Qiang,et al.State-of-the-art on rocking piers[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2018,(05):001-11.[doi:10.13197/j.eeev.2018.05.1.duxl.001]
点击复制

摇摆桥墩的研究综述
分享到:

《地震工程与工程振动》[ISSN:/CN:]

卷:
期数:
2018年05
页码:
001-11
栏目:
论文
出版日期:
2018-10-31

文章信息/Info

Title:
State-of-the-art on rocking piers
作者:
杜修力1 周雨龙1 韩强1 王智慧2
1. 北京工业大学 城市与工程安全减灾教育部重点实验室, 北京 100124;
2. 北京市市政工程设计研究总院有限公司, 北京 100082
Author(s):
DU Xiuli1 ZHOU Yulong1 HAN Qiang1 WANG Zhihui2
1. Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China;
2. Beijing General Municipal Engineering Design & Research Institute Co., Ltd., Beijing 100082, China
关键词:
桥梁结构震后恢复能力摇摆桥墩综述
Keywords:
bridge structurepost-earthquake resiliencerocking pierstate-of-the-art
分类号:
U442.55
DOI:
10.13197/j.eeev.2018.05.1.duxl.001
摘要:
桥梁作为交通生命线的枢纽工程,是交通基础设施震后功能恢复的关键所在。摇摆结构可将地震损伤控制在摇摆界面以避免主体结构破坏,且具有较好的抗震性能和自复位能力,因此在提高结构震后恢复能力方面具有显著优势。首先简要介绍摇摆桥墩的基本原理,回顾了摇摆理念在桥梁工程应用的发展历史,综述了摇摆桥墩的研发和试验研究、摇摆桥墩与上部结构的连接方式、摇摆结构分析方法等发展现状,总结了目前摇摆桥墩研究的不足和发展趋势。
Abstract:
As important joints of transportation lifeline systems, bridges have a significant effect on the resilience of post-earthquake serviceability. Rocking structures can limit damage in rocking interface to void damage in main structure, with fine seismic performance and self-centering capacity. Therefore, rocking structures have significant advantages in improving post-earthquake resilience. This paper introduced the basic mechanism of rocking piers and its application history briefly, and then reviewed the state of the art of rocking pier development and experiment, joint construction of rocking piers and superstructures, and analytical method of rocking structures.The shortages and development tendencies of existing rocking piers were summarized.

参考文献/References:

[1] JTG/T B02-01-2008公路桥梁抗震设计细则[S]. 北京:人民交通出版社, 2008. JTG/T B02-01-2008 Guidelines for Seismic Design of Highway Bridges[S]. Beijing:China Communications Press, 2008.(in Chinese)
[2] CJJ 166-2011城市桥梁抗震设计规范[S]. 北京:中国建筑工业出版社, 2011. CJJ 166-2011 Code for Seismic Design of Urban Bridges[S]. Beijing:China Building Industry Press, 2011.(in Chinese)
[3] JTG B02-2013公路工程抗震规范[S]. 北京:人民交通出版社, 2013. JTG B02-2013 Specification of Seismic Design for Highway Engineering[S]. Beijing:China Communications Press, 2013.(in Chinese)
[4] Shahawy M. Prefabricated bridge elements and systems to limit traffic disruption during construction[M]. Washington, DC:Transportation Research Board, 2003.
[5] Beck J L, Skinner R I. The seismic response of a reinforced concrete bridge pier designed to step[J]. Earthquake Engineering & Structural Dynamics, 1973, 2(4):343-358.
[6] Cormack L G. The design and construction of the major bridges on the Mangaweka rail deviation[J]. Transactions of the Institution of Professional Engineers New Zealand:Civil Engineering Section, 1988, 15(1):17-23.
[7] Priestley M J N, Seible F, Calvi G M. Seismic design and retrofit of bridges[M]. State of New Jersey:John Wiley & Sons, 1996.
[8] Astaneh-Asl A, Shen J H. Rocking behavior and retrofit of tall bridge piers[C]//Structural Engineering in Natural Hazards Mitigation. ASCE, 1993:121-126.
[9] Dowdell D J, Hamersley B A. Lions’ Gate Bridge North Approach:Seismic retrofit[C]//Behaviour of Steel Structures in Seismic Areas:Proc., 3rd Int. Conf.:STESSA 2000. Balkema, 2000:319-326.
[10] Jones M H, Holloway L J, Toan V, et al. Seismic retrofit of the 1927 Carquinez Bridge by a displacement capacity approach[C]//Second National Seismic Conference on Bridges and Highways. 1997.
[11] Ingham T J, Rodriguez S, Nader M N, et al. Seismic retrofit of the golden gate bridge[C]//Proc., National Seismic Conf. on Bridges and Highways:Progress in Research and Practice. Federal Highway Administration, 1995.
[12] Mander J B, Cheng C T. Seismic resistance of bridge piers based on damage avoidance design[R]. New York:US National Center for Earthquake Engineering Research (NCEER), 1997.
[13] Cheng C T. Shaking table tests of a self-centering designed bridge substructure[J]. Engineering Structures, 2008, 30(12):3426-3433.
[14] 夏修身, 陈兴冲. 铁路高墩桥梁基底摇摆隔震与墩顶减震对比研究[J]. 铁道学报, 2011, 33(9):102-107. XIA Xiushen, CHEN Xingchong. Controlled rocking and pier top seismic isolation of railway bridge with tall piers[J]. Journal of the China Railway society, 2011, 33(9):102-107. (in Chinese)
[15] Stanton J F, Nakaki S D. Design guidelines for precast concrete seismic structural systems[M]. Washington, DC:University of Washington, 2002.
[16] Palermo A, Pampanin S, Calvi G M. Concept and development of hybrid solutions for seismic resistant bridge systems[J]. Journal of Earthquake Engineering, 2005, 9(06):899-921.
[17] Palermo A, Pampanin S, Marriott D. Design, modeling, and experimental response of seismic resistant bridge piers with posttensioned dissipating connections[J]. Journal of Structural Engineering, 2007, 133(11):1648-1661.
[18] Palermo A, Pampanin S. Enhanced seismic performance of hybrid bridge systems:Comparison with traditional monolithic solutions[J]. Journal of Earthquake Engineering, 2008, 12(8):1267-1295.
[19] Solberg K, Mashiko N, Mander J B, et al. Performance of a damage-protected highway bridge pier subjected to bidirectional earthquake attack[J]. Journal of Structural Engineering, 2009, 135(5):469-478.
[20] Ou Y C, Wang P H, Tsai M S, et al. Large-scale experimental study of precast segmental unbonded posttensioned concrete bridge columns for seismic regions[J]. Journal of Structural Engineering, 2010, 136(3):255-264.
[21] Chou C C, Chen Y C. Cyclic tests of post-tensioned precast CFT segmental bridge columns with unbonded strands[J]. Earthquake engineering & structural dynamics, 2006, 35(2):159-175.
[22] Marriott D, Pampanin S, Palermo A. Quasi-static and pseudo-dynamic testing of unbonded post-tensioned rocking bridge piers with external replaceable dissipaters[J]. Earthquake Engineering & Structural Dynamics, 2009, 38(3):331-354.
[23] Marriott D, Pampanin S, Palermo A. Biaxial testing of unbonded post-tensioned rocking bridge piers with external replacable dissipaters[J]. Earthquake Engineering & Structural Dynamics, 2011, 40(15):1723-1741.
[24] ElGawady M, Booker A J, Dawood H M. Seismic behavior of posttensioned concrete-filled fiber tubes[J]. Journal of Composites for Construction, 2010, 14(5):616-628.
[25] ElGawady M A, Sha’lan A. Seismic behavior of self-centering precast segmental bridge bents[J]. Journal of Bridge Engineering, 2010, 16(3):328-339.
[26] 葛继平, 魏红一, 王志强. 循环荷载作用下预制拼装桥墩抗震性能分析[J]. 同济大学学报:自然科学版, 2008, 36(7):894-899. GE Jiping, WEI Hongyi, WANG Zhiqiang. Seismic performance of precast segmental bridge column under cyclic loading[J]. Journal of Tongji University:Natural Science, 2008, 36(7):894-899.(in Chinese)
[27] 布占宇, 唐光武. 无黏结预应力带耗能钢筋预制节段拼装桥墩抗震性能研究[J]. 中国铁道科学, 2011, 32(3):33-40. BU Zhanyu, TANG Huangwu. Seismic performance investigation of unbonded prestressing precast segmental bridge piers with energy dissipation bars[J]. China Railway Science, 2011, 32(3):33-40.(in Chinese)
[28] 郭佳, 辛克贵, 何铭华, 等. 自复位桥梁墩柱结构抗震性能试验研究与分析[J]. 工程力学, 2012, 29(A01):29-34. GUO Jia, XIN Kegui, HE Minghua, et al. Experimental study and analysis on the seismic performance of a self-centering bridge pier[J]. Engineering Mechanics, 2012, 29(A01):29-34.(in Chinese)
[29] 谭真. 设置黏弹性阻尼器的预应力节段拼装桥墩抗震性能研究[D]. 哈尔滨:哈尔滨工业大学, 2013. TAN Zhen. Seismic performance of post-tensioned precast concrete segmental bridge columns with viscoelastic dampers[D]. Haerbin:Harbin Institute of Technology, 2013.(in Chinese)
[30] ElGawady M A, Dawood H M. Analysis of segmental piers consisted of concrete filled FRP tubes[J]. Engineering Structures, 2012, 38:142-152.
[31] Dawood H, ElGawady M, Hewes J. Behavior of segmental precast posttensioned bridge piers under lateral loads[J]. Journal of Bridge Engineering, 2011, 17(5):735-746.
[32] Dawood H M, ElGawady M. Performance-based seismic design of unbonded precast post-tensioned concrete filled GFRP tube piers[J]. Composites Part B:Engineering, 2013, 44(1):357-367.
[33] Trono W, Jen G, Panagiotou M, et al. Seismic response of a damage-resistant recentering posttensioned-HyFRC bridge column[J]. Journal of Bridge Engineering, 2015:04014096.
[34] Nikbakht E, Rashid K, Hejazi F, et al. Application of shape memory alloy bars in self-centring precast segmental columns as seismic resistance[J]. Structure and Infrastructure Engineering, 2015, 11(3):297-309.
[35] Guo T, Cao Z, Xu Z, et al. Cyclic load tests on self-centering concrete pier with external dissipators and enhanced durability[J]. Journal of Structural Engineering, 2015:04015088.
[36] Barthes C B. Design of earthquake resistant bridges using rocking columns[D]. California:University of California, Berkeley, 2012.
[37] 何铭华, 辛克贵, 郭佳. 新型自复位桥梁墩柱节点的局部稳定性研究[J]. 工程力学, 2012, 29(4):122-127. HE Minghua, XIN Kegui, GUO Jia. Local stability study of new bridge piers with self-centering joints[J]. Engineering Mechanics, 2012, 29(4):122-127.(in Chinese)
[38] 何铭华, 辛克贵, 郭佳, 等. 自复位桥墩的内禀侧移刚度和滞回机理研究[J]. 中国铁道科学, 2012, 33(5):22-28. HE Minghua, XIN Kegui, GUO Jia, et al. Research on the intrinsic lateral stiffness and hysteretic mechanics of self-centering pier[J]. Zhongguo Tiedao Kexue, 2012, 33(5):22-28.(in Chinese)
[39] Deng L, Kutter B L, Kunnath S K. Centrifuge modeling of bridge systems designed for rocking foundations[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(3):335-344.
[40] Keever M D, Chung P, Holden T, et al. Innovative solution to seismic design challenges on the Mococo overhead project[J]. Technical Memorandum of Public Works Research Institute, 2006, 4009:257-269.
[41] Zaghi A E, Saiidi M S. Bearing and shear failure of pipe-pin hinges subjected to earthquakes[J]. Journal of Bridge Engineering, 2010, 16(3):340-350.
[42] Esmaili Zaghi A. Seismic design of pipe-pin connections in concrete bridges[M]. Nevada:University of Nevada, Reno, 2009.
[43] Zaghi A E, Saiid S M, El-Azazy S. Shake table studies of a concrete bridge pier utilizing pipe-pin two-way hinges[J]. Journal of Bridge Engineering, 2010, 16(5):587-596.
[44] Pampanin S. Emerging solutions for high seismic performance of precast/prestressed concrete buildings[J]. Journal of Advanced Concrete Technology, 2005, 3(2):207-223.
[45] ACI T1.2-03. Special hybrid moment frames composed of discretely jointed precast and post-tensioned concrete members[S]. Michigan:American Concrete Institute, 2003.
[46] NZS3101. The Designing of Concrete Structures and Commentary[S]. Wellington:Standards New Zealand, 2006.
[47] Pampanin S, Priestley M J N, Sritharan S. Analytical modelling of the seismic behaviour of precast concrete frames designed with ductile connections[J]. Journal of Earthquake Engineering, 2001, 5(3):329-367.
[48] Housner G W. The behavior of inverted pendulum structure during earthquakes[J]. Bulletin of the Seismic of America, 1963, 2(53):403-417.
[49] Tso W K, Wong C M. Steady state rocking response of rigid blocks part 1:Analysis[J]. Earthquake Engineering & Structural Dynamics, 1989, 18(1):89-106.
[50] Aslam M, Scalise D T, Godden W G. Earthquake rocking response of rigid bodies[J]. Journal of the Structural Division, 1980, 106(2):377-392.
[51] Makris N, Konstantinidis D. The rocking spectrum and the shortcomings of design guidelines[R]. California:Pacific Earthquake Engineering Research Center, 2001.
[52] Makris N, Konstantinidis D. The rocking spectrum and the limitations of practical design methodologies[J]. Earthquake engineering & structural dynamics, 2003, 32(2):265-289.
[53] Makris N, Zhang J. Rocking response and overturning of anchored equipment under seismic excitation[R]. California:Pacific Earthquake Engineering Research Center, 1999.
[54] Makris N, Vassiliou M F. Planar rocking response and stability analysis of an array of free-standing columns capped with a freely supported rigid beam[J]. Earthquake Engineering & Structural Dynamics, 2013, 42(3):431-449.
[55] Makris N, Vassiliou M F. Are some top-heavy structures more stable?[J]. Journal of Structural Engineering, 2014, 140(5):06014001.
[56] Dimitrakopoulos E G, Paraskeva T S. Dimensionless fragility curves for rocking response to near-fault excitations[J]. Earthquake Engineering & Structural Dynamics, 2015, 44(12):2015-2033.
[57] Makris N, Vassiliou M F. Dynamics of the rocking frame with vertical restrainers[J]. Journal of Structural Engineering, 2014, 141(10):04014245.

相似文献/References:

[1]常军,任永辉,陈忠汉.改进曲率模态识别桥梁损伤位置方法研究[J].地震工程与工程振动,2010,(04):121.
 CHANG Jun,REN Yonghui,CHEN Zhonghan.Bridge damage location identification by improved curvature mode[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2010,(05):121.
[2]施洲,赵人达.桥梁结构损伤对其固有振动特性的影响[J].地震工程与工程振动,2007,(05):117.
 SHI Zhou,ZHAO Renda.Effects of bridge damage on its free-vibration characteristics[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2007,(05):117.
[3]柳春光,刘鑫.遗传算法在桥梁结构地震可靠性分析中的应用[J].地震工程与工程振动,2006,(05):120.
 Liu Chunguang,Liu Xin.Reliability analysis of bridge structure based on genetic algorithms[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2006,(05):120.

备注/Memo

备注/Memo:
收稿日期:2017-10-20;改回日期:2018-02-05。
基金项目:国家自然科学基金创新研究群体项目(51421005);教育部"创新团队发展计划"(IRT13044);国家自然科学基金项目(51421005,51578022)
作者简介:杜修力(1962-),男,教授,博士,主要从事地震工程与防灾工程领域的研究.E-mail:duxiuli@bjut.edu.cn
更新日期/Last Update: 1900-01-01