[1]曹泽林,陶夏新.基于频率波数域格林函数的宽频带地震动合成方法综述[J].地震工程与工程振动,2018,(05):033-40.[doi:10.13197/j.eeev.2018.05.33.caozl.004]
 CAO Zelin,TAO Xiaxin.Review on broadband ground motion simulation based on frequency-wavenumber Green’s function[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2018,(05):033-40.[doi:10.13197/j.eeev.2018.05.33.caozl.004]
点击复制

基于频率波数域格林函数的宽频带地震动合成方法综述
分享到:

《地震工程与工程振动》[ISSN:/CN:]

卷:
期数:
2018年05
页码:
033-40
栏目:
论文
出版日期:
2018-10-31

文章信息/Info

Title:
Review on broadband ground motion simulation based on frequency-wavenumber Green’s function
作者:
曹泽林1 陶夏新12
1. 哈尔滨工业大学 土木工程学院, 黑龙江 哈尔滨 150090;
2. 中国地震局 工程力学研究所, 黑龙江 哈尔滨 150080
Author(s):
CAO Zelin1 TAO Xiaxin12
1. School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China;
2. Institute of Engineering Mechanics, China Earthquake Administration, Harbin 150080, China
关键词:
宽频带地震动合成频率波数域格林函数有效频带震源描述FK法
Keywords:
broadband ground motion simulationfrequency-wavenumber Green’s functioneffective bandwidthsource descriptionFK approach
分类号:
P315.9
DOI:
10.13197/j.eeev.2018.05.33.caozl.004
摘要:
综述基于频率波数域格林函数的宽频带地震动合成方法(FK法),讨论了格林函数的计算和震源描述对合成结果有效频带的影响。归纳了频率波数域格林函数的研究进展、计算特点以及相对其他方法的优势,着重分析了其中水平波数积分、速度结构模型选取和土层非线性效应等问题的处理方法。评述了适用于FK法合成宽频带地震动的震源描述方法,强调了破裂速度、震源时间函数、上升时间等震源参数的取值方法和选取准则。指出了FK法合成多维地震动值得深入研究的问题。
Abstract:
The synthesis of broadband ground motion based on frequency-wavenumber Green’s function (FK approach) is reviewed,and the influence of Green’s function calculation and source description on the effective bandwidth of synthetic seismogram is the focus of the discussion.For the frequency-wavenumber Green’s function used in FK approach, the development, computing feature and advantage over other methods are systematically summarized to demonstrate its potential in the synthesis of multipoint and multidimensional ground motion.Meanwhile,the problems and countermeasures in the integration on horizontal wavenumber, selection of velocity structure model and incorporation of nonlinear soil effect are analyzed.Then, source description suitable for broadband simulation by FK approach is investigated, including the parameterization and constraint of each source parameter, such as rupture velocity, source time function and rise time, and the whole selection criterion.Issues need to be researched in multidimensional simulation are also indicated.

参考文献/References:

[1] Kamae K, Irikura K, Pitarka A. A technique for simulating strong ground motion using hybrid Green’s function[J]. Bulletin of the Seismological Society of America, 1998, 88(2):357-367.
[2] Pitarka A, Somerville P, Fukushima Y, et al. Simulation of near-fault strong-ground motion using hybrid Green’s functions[J]. Bulletin of the Seismological Society of America, 2000, 90(3):566-586.
[3] Graves R W, Pitarka A. Broadband ground-motion simulation using a hybrid approach[J]. Bulletin of the Seismological Society of America, 2010, 100(5A):2095-2123.
[4] 孙晓丹, 陶夏新. 宽频带地震动混合模拟方法综述[J]. 地震学报, 2012, 34(4):571-577. SUN Xiaodan, TAO Xiaxin. Hybrid simulation of broadband ground motion:Overview[J]. Acta Seismologica Sinica, 2012, 34(4):571-577. (in Chinese)
[5] Boore D M. Simulation of ground motion using the stochastic method[J]. Pure and Applied Geophysics, 2003, 160(3-4):635-676.
[6] Li W, Assimaki D. Simulating soil stiffness degradation in transient site response predictions[J]. Soil Dynamics and Earthquake Engineering, 2010, 30(5):299-309.
[7] Crempien J G F, Archuleta R J. UCSB method for simulation of broadband ground motion from kinematic earthquake sources[J]. Seismological Research Letters, 2015, 86(1):61-67.
[8] Mai P M, Beroza G C. A hybrid method for calculating near-source, broadband seismograms:Application to strong motion prediction[J]. Physics of the Earth and Planetary Interiors, 2003, 137(1):183-199.
[9] Frankel A. A constant stress-drop model for producing broadband synthetic seismograms:Comparison with the Next Generation Attenuation relations[J]. Bulletin of the Seismological Society of America, 2009, 99(2A):664-680.
[10] Somerville P, Ni S. Earthquake source and ground motion characteristics in the central and eastern United States[R]. Pasadena:URS Group Inc, 2010.
[11] Hutchings L, G Viegas. Application of empirical Green’s functions in earthquake source, wave propagation and strong ground motion studies. Earthquake Research and Analysis-New Frontiers in Seismology[M]. S D’Amico (Editor), Croatia:Intech, 2012:87-140.
[12] Fortuño C, de la Llera J C, Wicks C W, et al. Synthetic hybrid broadband seismograms based on InSAR coseismic displacements[J]. Bulletin of the Seismological Society of America, 2014, 104(6):2735-2754.
[13] Liu P, Archuleta R J, Hartzell S H. Prediction of broadband ground-motion time histories:Hybrid low/high-frequency method with correlated random source parameters[J]. Bulletin of the Seismological Society of America, 2006, 96(6):2118-2130.
[14] Hartzell S, Guatteri M, Mai P M, et al. Calculation of broadband time histories of ground motion, Part Ⅱ:Kinematic and dynamic modeling using theoretical Green’s functions and comparison with the 1994 Northridge earthquake[J]. Bulletin of the Seismological Society of America, 2005, 95(2):614-645.
[15] Hartzell S, Frankel A, Liu P, et al. Model and parametric uncertainty in source-based kinematic models of earthquake ground motion[J]. Bulletin of the Seismological Society of America, 2011, 101(5):2431-2452.
[16] Sun X, Hartzell S, Rezaeian S. Ground motion simulation for the 23 August 2011, Mineral, Virginia earthquake using physics-based and stochastic broadband methods[J]. Bulletin of the Seismological Society of America, 2015, 105(5):2641-2661.
[17] Schmedes J, Archuleta R J. Near-source ground motion along strike-slip faults:Insights into magnitude saturation of PGV and PGA[J]. Bulletin of the Seismological Society of America, 2008, 98(5):2278-2290.
[18] Archuleta R J, Crempien J G F. The UCSB method for simulating broadband ground motion using correlated rupture parameters on a finite fault[C]//16th World Conference on Earthquake Engineering. Santiago, 2017, Paper No.4433.
[19] Aki K, Richards P G. Quantitative Seismology[M]. 2nd ed. Sausalito, California:University Science Books. 2002:37-62.
[20] Bouchon M, Aki K. Discrete wave-number representation of seismic-source wave fields[J]. Bulletin of the Seismological Society of America, 1977, 67(2):259-277.
[21] Bouchon M. A simple method to calculate Green’s functions for elastic layered media[J]. Bulletin of the Seismological Society of America, 1981, 71(4):959-971.
[22] Bouchon M. A review of the discrete wavenumber method[J]. Pure and Applied Geophysics, 2003, 160:445-465.
[23] Wang C Y, Herrmann R B. A numerical study of P-, SV-, and SH-wave generation in a plane layered medium[J]. Bulletin of the Seismological Society of America, 1980, 70(4):1015-1036.
[24] Saikia C K. Modified frequency-wavenumber algorithm for regional seismograms using Filon’s quadrature:modelling of Lg waves in eastern North America[J]. Geophysical Journal International, 1994, 118(1):142-158.
[25] Wang R. A simple orthonormalization method for stable and efficient computation of Green’s functions[J]. Bulletin of the Seismological Society of America, 1999, 89(3):733-741.
[26] Zhu L, Rivera L A. A note on the dynamic and static displacements from a point source in multilayered media[J]. Geophysical Journal International, 2002, 148(3):619-627.
[27] Olson A H, Orcutt J A, Frazier G A. The discrete wavenumber/finite element method for synthetic seismograms[J]. Geophysical Journal International, 1984, 77(2):421-460.
[28] Kennett B L N, Kerry N J. Seismic waves in a stratified half space[J]. Geophysical Journal International, 1979, 57(3):557-583.
[29] Kennett B L N. Seismic Wave Propagation in Stratified Media (2nd edition)[M]. Canberra, Australia:ANU Press. 2009.
[30] Luco J E, Apsel R J. On the Green’s functions for a layered half-space. Part I[J]. Bulletin of the Seismological Society of America, 1983, 73(4):909-929.
[31] Yao Z X, Harkrider D G. A generalized reflection-transmission coefficient matrix and discrete wavenumber method for synthetic seismograms[J]. Bulletin of the Seismological Society of America, 1983, 73(6A):1685-1699.
[32] 姚振兴, 郑天愉. 计算综合地震图的广义反射、透射系数矩阵和离散波数方法(二)——对不同深度点源的算法[J]. 地球物理学报, 1984, 27(4):338-348. YAO Zhenxing, ZHENG Tianyu. A generalized reflection-transmission coefficient matrix and discrete wavenumber method for synthetic seismograms (Ⅱ) for multiple sources at different depths[J]. Chinese Journal of Geophysics, 1984, 27(4):338-348. (in Chinese)
[33] 姚振兴.计算综合地震图的广义反射、透射系数矩阵和离散波数方法(三)——广义接收函数矩阵和半解析的波数积分方法[C]//寸丹集——庆贺刘光鼎院士工作50周年学术论文集,北京:科学出版社, 1998:647-654. YAO Zhenxing.A generalized reflection-transmission coefficient matrix and discrete wavenumber method for synthetic seismograms (Ⅲ)generalized reflection-transmission coefficient matrix and semi-analytical wave number representation[C]//Cundanji, Beijing:Science Press. 1998:647-654.(in Chinese)
[34] Haskell N A. Radiation pattern of surface waves from point sources in a multi-layered medium[J]. Bulletin of the Seismological Society of America, 1964, 54(1):377-393.
[35] Olsen K B, Madariaga R, Archuleta R J. Three-dimensional dynamic simulation of the 1992 Landers earthquake[J]. Science, 1997, 278(5339):834-838.
[36] Komatitsch D, Tromp J. Introduction to the spectral element method for three-dimensional seismic wave propagation[J]. Geophysical Journal International, 1999, 139(3):806-822.
[37] Hisada Y. An efficient method for computing Green’s functions for a layered half-space with sources and receivers at close depths[J]. Bulletin of the Seismological Society of America, 1994, 84(5):1456-1472.
[38] Hisada Y. An efficient method for computing Green’s functions for a layered half-space with sources and receivers at close depths (Part 2)[J]. Bulletin of the Seismological Society of America, 1995, 85(4):1080-1093.
[39] Zhang H M, Chen X F, Chang S. An efficient numerical method for computing synthetic seismograms for a layered half-space with sources and receivers at close or same depths[J]. Pure and Applied Geophysics, 2003, 160(3-4):467-486.
[40] Wang Y, Mooney W D, Yuan X, et al. Crustal structure of the northeastern Tibetan Plateau from the southern Tarim Basin to the Sichuan Basin, China[J]. Tectonophysics, 2013, 584:191-208.
[41] Laske G, Masters G, Ma Z, et al. Update on CRUST1.0-A 1-degree global model of earth’s crust[C]//EGU General Assembly Conference. 2013:Abstract EGU2013-2658.
[42] 中国区域地震学参考模型[OL]. http://chinageorefmodel.org/,2016. China Geophysical Reference Model[OL]. http://chinageorefmodel.org/,2016. (in Chinese)
[43] Day S M, Bradley C R. Memory-efficient simulation of anelastic wave propagation[J]. Bulletin of the Seismological Society of America, 2001, 91(3):520-531.
[44] Graves R W, Day S M. Stability and accuracy analysis of coarse-grain viscoelastic simulations[J]. Bulletin of the Seismological Society of America, 2003, 93(1):283-300.
[45] Anderson J G. The composite source model for broadband simulations of strong ground motions[J]. Seismological Research Letters, 2015, 86(1):68-74.
[46] Hartzell S, Bonilla L F, Williams R A. Prediction of nonlinear soil effects[J]. Bulletin of the Seismological Society of America, 2004, 94(5):1609-1629.
[47] Boore D M, Joyner W B. Site amplifications for generic rock sites[J]. Bulletin of the Seismological Society of America, 1997, 87(2):327-341.
[48] Borcherdt R D. Estimates of site-dependent response spectra for design (methodology and justification)[J]. Earthquake Spectra, 1994, 10(4):617-653.
[49] Kieling K, Wang R, Hainzl S. Broadband ground-motion simulation using energy-constrained rise-time scaling[J]. Bulletin of the Seismological Society of America, 2014, 104(6):2683-2697.
[50] Rezaeian S, Hartzell S, Sun X, et al. Simulation of earthquake ground motions in the eastern United States using deterministic physics-based and site-based stochastic approaches[J]. Bulletin of the Seismological Society of America, 2017, 107(1):149-168.
[51] Geller R J. Scaling relations for earthquake source parameters and magnitudes[J]. Bulletin of the Seismological Society of America, 1976, 66(5):1501-1523.
[52] Somerville P, Irikura K, Graves R, et al. Characterizing crustal earthquake slip models for the prediction of strong ground motion[J]. Seismological Research Letters, 1999, 70(1):59-80.
[53] Frankel A. Modeling strong-motion recordings of the 2010 Mw8.8 Maule, Chile, earthquake with high stress-drop subevents and background slip[J]. Bulletin of the Seismological Society of America, 2017, 107(1):372-386.
[54] Graves R, Pitarka A. Refinements to the Graves and Pitarka (2010) broadband ground-motion simulation method[J]. Seismological Research Letters, 2015, 86(1):75-80.
[55] Schmedes J, Archuleta R J, Lavallée D. Correlation of earthquake source parameters inferred from dynamic rupture simulations[J]. Journal of Geophysical Research:Solid Earth, 2010, 115(B3).
[56] Guatteri M, Mai P M, Beroza G C, et al. Strong ground-motion prediction from stochastic-dynamic source models[J]. Bulletin of the Seismological Society of America, 2003, 93(1):301-313.
[57] Beresnev I A. Factors controlling high-frequency radiation from extended ruptures[J]. Journal of Seismology, 2017, 21(5):1277-1284.
[58] Dreger D, Tinti E, Cirella A. Slip velocity function parameterization for broadband ground motion simulation[C]//Seismological Society of America 2007 Annual Meeting. 2007.
[59] Shahjouei A, Pezeshk S. Synthetic seismograms using a hybrid broadband ground-motion simulation approach:application to central and eastern United States[J]. Bulletin of the Seismological Society of America, 2015, 105(2A):686-705.
[60] Hartzell S, Liu P, Mendoza C, et al. Stability and uncertainty of finite-fault slip inversions:Application to the 2004 Parkfield, California, earthquake[J]. Bulletin of the Seismological Society of America, 2007, 97(6):1911-1934.
[61] Beresnev I A. Source parameters observable from the corner frequency of earthquake spectra[J]. Bulletin of the Seismological Society of America, 2002, 92(5):2047-2048.
[62] Song S G, Pitarka A, Somerville P. Exploring spatial coherence between earthquake source parameters[J]. Bulletin of the Seismological Society of America, 2009, 99(4):2564-2571.
[63] Bjerrum L W, Sørensen M B, Atakan K. Strong ground-motion simulation of the 12 May 2008 Mw7.9 Wenchuan earthquake, using various slip models[J]. Bulletin of the Seismological Society of America, 2010, 100(5B):2396-2424.
[64] Aagaard B T, Brocher T M, Dolenc D, et al. Ground-motion modeling of the 1906 San Francisco earthquake, Part Ⅱ:ground-motion estimates for the 1906 earthquake and scenario events[J]. Bulletin of the Seismological Society of America, 2008, 98(2):1012-1046.
[65] Graves R, Pitarka A. Kinematic ground-motion simulations on rough faults including effects of 3D stochastic velocity perturbations[J]. Bulletin of the Seismological Society of America, 2016, 106(5):2136-2153.
[66] Brune J N. Tectonic stress and the spectra of seismic shear waves from earthquakes[J]. Journal of Geophysical Research, 1970, 75(26):4997-5009.
[67] Brune J N.Correction[J]. Journal of Geophysical Research, 1971, 76:5002.
[68] Crempien J G F, Archuleta R J. Does a 1D velocity structure hurt or help ground motion predictions[J]. Seismological Research Letters, 2014, 85(2):508.
[69] 刘海明, 陶夏新, 唐光武. 大跨桥梁非一致地震动输入的研究进展[J]. 世界地震工程, 2011, 27(4):65-72. LIU Haiming, TAO Xiaxin, TANG Guangwu. A review of non-consistent ground motion input to large span bridges[J]. World Earthquake Engineering, 2011, 27(4):65-72. (in Chinese)
[70] Liu H L, Helmberger D V. The 23:19 aftershock of the 15 October 1979 Imperial Valley earthquake:more evidence for an asperity[J]. Bulletin of the Seismological Society of America, 1985, 75(3):689-708.

备注/Memo

备注/Memo:
收稿日期:2017-10-10;改回日期:2018-03-05。
基金项目:国家自然科学基金项目(51778197,51678540,51478443)
作者简介:曹泽林(1990-),男,博士研究生,主要从事工程地震研究.E-mail:caozelin1990@163.com
通讯作者:陶夏新(1949-),男,教授,博士,主要从事工程地震,岩土工程防灾等方面的研究.E-mail:taoxiaxin@aliyun.com
更新日期/Last Update: 1900-01-01