[1]张衡,朱敏,杨新格.地震反应谱阻尼修正系数的研究论述[J].地震工程与工程振动,2018,(05):129-138.[doi:10.13197/j.eeev.2018.05.129.zhangh.015]
 ZHANG Heng,ZHU Min,YANG Xinge.Review of research for damping correction factor of earthquake spectrum[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2018,(05):129-138.[doi:10.13197/j.eeev.2018.05.129.zhangh.015]
点击复制

地震反应谱阻尼修正系数的研究论述
分享到:

《地震工程与工程振动》[ISSN:/CN:]

卷:
期数:
2018年05
页码:
129-138
栏目:
论文
出版日期:
2018-10-31

文章信息/Info

Title:
Review of research for damping correction factor of earthquake spectrum
作者:
张衡 朱敏 杨新格
西南交通大学 土木工程学院, 四川 成都 610031
Author(s):
ZHANG Heng ZHU Min YANG Xinge
School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China
关键词:
地震反应谱阻尼修正系数影响因素研究方法最小二乘回归随机效应模型
Keywords:
earthquake spectradamping correction factorinfluence factorresearch methodleast-squares regressionrandom effects model
分类号:
P631.4+43
DOI:
10.13197/j.eeev.2018.05.129.zhangh.015
摘要:
在结构抗震设计中,阻尼比大小对结构的动力响应有一定影响,常采用5%阻尼比水平的设计反应谱作为设计标准,利用阻尼修正系数来有效地评估其他阻尼比水平下建筑物在地震作用下的响应情况。为了给之后阻尼修正系数的研究者以借鉴和帮助,本文结合过去三十多年来国内外关于阻尼修正系数的研究成果,对其影响因素和研究方法进行了归纳和分析,结果表明:阻尼比水平、谱周期、地震震级、传播距离、场地类别、地质构造和地震类型都会影响阻尼修正系数值;其中最小二乘回归法是现阶段应用最为广泛且切实可行的研究手段。借助最小二乘回归法和随机效应模型,文章的最后给出了一种可能适用于今后我国阻尼修正系数研究的分析途径。
Abstract:
Damping correction factors are constantly utilized as an useful way to obtain the acceleration or displacement response spectra provided with a viscous damping ratio of 5% to the other values of viscous damping required for building design in earthquake engineering and is an alternative method exactly to solve the design problem of structures with mutative levels of viscous damping. However, the research about damping correction factor is still lacking in our country. In order to help future researchers, the influencing factors and research methods are summarized and discussed based on the research results of the damping correction factor in more than thirty years. In the paper, the previous research contents are analyzed and the research methods are also illustrated. From the results of the final analysis, we can get the following conclusions:the damping ratio, the natural period, the earthquake magnitude, the propagation distance, the site condition, the tectonic setting and the type of earthquake will affect the value of the damping correction factor; the least-squares regression method is currently approved and the most popular method. At the end of this paper, a way that may be suitable for the study of damping correction coefficients in the future is proposed by means of least-squares regression and random effects model.

参考文献/References:

[1]] GB50011-2010建筑抗震设计规范[S]. 北京:中国建筑工业出版社, 2016. GB50011-2010 Code for Seismic Design of Buildings[S]. Beijing:Building Industry Press of China, 2016.(in Chinese)
[2] Ray Clough, Joseph Penzien. 结构动力学[M]. 王光远译. 北京:高等教育出版社, 2006:15-70. Ray Clough, Joseph Penzien. Dynamics of stuctures[M]. WANG Guangyuan translation. Beijing:Higher Education Press, 2006:15-70.(in Chinese)
[3] OSAKI Yorihiko.地震动的谱分析入门[M]. 田琪译. 北京:地震出版社, 2008:100-136. OSAKI Yorihiko. Shin jishindo no spectre kaiseki nyumon[M]. TIAN Qi translation. Beijing:Seismological Press, 2008:100-136.(in Chinese)
[4] Newmark N M, Hall W J. Earthquake spectra and design[M]. EERI Monograph Series, Earthquake Engineering Research Institute:Oakland, CA, 1982.
[5] Ashour S A. Elastic seismic response of buildings with supplemental damping[D]. Department of Civil Engineering, University of Michigan, January 1987.
[6] Eurocode 8. Design of Structures for Earthquake Resistance, Part 1:General Rules, Seismic Actions and Rules for Buildings[S]. ENV 1998-1-1, CEN, Brussels, 1994.
[7] Eurocode 8. Design of Structures for Earthquake Resistance, Part 1:General Rules, Seismic Actions and Rules for Buildings[S]. EN 2004-1-1, CEN, Brussels, 2004.
[8] Bommer J J, Elnashai A S, Weir A G. Compatible acceleration and displacement spectra for seismic design codes[C]//Proceedings of the 12th World Conference on Earthquake Engineering, Auckland, 2000.
[9] Seismic Design Criteria Version 1.2[S]. California Department of Transportation, Sacramento, California, 2001.
[10] Guidelines for Calculation Procedure and Technical Standard on Seismically Isolated Structures[S]. Building Center of Japan, 2001.
[11] Zhou F, Wenguang L, Xu Z. State of the art on applications, R&D and design rules for seismic isolation in China[C]//In:Proc. 8th World Seminar on Seismic Isolation, Energy Dissipation and Active Vibration Control of Structures, Yerevan, Armenia, 2003.
[12] Lin Y Y, Chang K C. Study on damping reduction factor for buildings under earthquake ground motions[J]. Journal of Structural Engineering, 2003, 129(2):206-214.
[13] Yu-Yuan Lin, Kuo-Chung Chang. Effects of site classes on damping reduction factors[J]. Journal of Structural Engineering, 2004, 130(11):1667-1675.
[14] FEMA-356. NEHRP Prestandard and Commentary for the Seismic Rehabilitation of Buildings[S]. Federal Emergency Management Agency, Washington D.C, 2000.
[15] George D. Hatzigeorgiou. Damping modification factors for SDOF systems subjected tonear-fault, far-fault and artificial earthquakes[J]. Earthquake Engineering and Structural Dynamics, 2010, 39:1239-1258.
[16] 蒋建, 吕西林, 周颖, 等. 考虑场地类别的阻尼比修正系数研究[J]. 地震工程与工程振动, 2009, 29(1):153-161. JIANG Jian, LV Xilin, ZHOU Ying, et al. Research on modification factors of damping ratios considering site conditions[J]. Earthquake Engineering and Engineering Dynamics, 2009, 29(1):163-161.(in Chinese)
[17] 郝安民, 周德源, 李亚明, 等. 近断层脉冲型地震动下位移谱阻尼修正系数[J]. 振动与冲击, 2011, 30(12):108-114. HAO Anmin, ZHOU Deyuan, LI Yaming, et al. Damping modification factors of displacement response spectrum under pulse-type motions in near-fault region[J]. Journal of Vibration and Shock, 2011, 30(12):108-114.(in Chinese)
[18] Stafford P J, Rishmila Mendis, Bommer J J. Dependence of damping correction factors for response spectra on duration and numbers of cycles[J]. Journal of Structural Engineering, 2008, 134(8):1364-1373.
[19] Bommer J J, Alejandro Martínez-Pereira. The effective duration of earthquake strong motion[J]. Journal of Earthquake Engineering, 1999, 3(2):127-172.
[20] Jonathan Hancock, Bommer J J. The effective number of cycles of earthquake ground motion[J]. Earthquake Engineering and Structural Dynamics, 2005, 34:637-664.
[21] Hubbard D T, Mavroeidis G P. Damping coefficients for near-fault ground motion response spectra[J]. Soil Dynamics and Earthquake Engineering, 2011, 31:401-417.
[22] Poulad Daneshvar, Najib Bouaanani, Katsuichiro Goda, et al. Damping reduction factors for crustal, inslab, and interface earthquakes characterizing seismic hazard in south-western British Columbia, Canada[J]. Earthquake Spectra, 2016, 32(1):45-74.
[23] 周靖, 方小丹, 毛威. 长周期抗震设计反应谱衰减指数与阻尼修正系数研究[J]. 建筑结构学报, 2017, 38(1):62-75. ZHOU Jing, FANG Xiaodan, MAO Wei. Attenuation power index and damping reduction factor of seismic design spectrum for long-period ground motions[J]. Journal of Building Structures, 2017, 38(1):62-75.(in Chinese)
[24] Li Heng, Chen Feng. Damping modification factors for acceleration response spectra[J]. Geodesy and Geodynamics, 2017, 8:361-370.
[25] Cameron W I, Green R A. Damping correction factors for horizontal ground-motion response spectra[J]. Bulletin of the Seismological Society of America, 2007, 97(3):934-960.
[26] Michele Palermo, Stefano Silvestri, Tomaso Trombetti. Stochastic-based damping reduction factors[J]. 2016, 80:168-176.
[27] Rita Greco, Alessandra Fiore, Bruno Briseghella. Influence of soil type on damping reduction factor:A stochastic analysis based on peak theory[J]. Soil Dynamics and Earthquake Engineering, 2018, 104:365-368.
[28] Rezeian S, Bozorgnia Y, Idriss IM, et al. Damping scaling factors for elastic response spectra for shallow crustal earthquakes in active tectonic regions:"Average" horizontal component[J]. Earthquake Spectra, 2014, 30(2):939-963.
[29] Zhao X John, Zhou Shuanglin, Zhou Jun, et al. Ground-motion prediction equations for shallow crustal and upper-mantle earthquakes in Japan using site class[J]. Bulletin of the Seismological Society of America, 2016, 106(4):1552-1569.
[30] Abrahamson N A, Youngs R R. A stable algorithm for regression analyses using the random effects model[J]. Bulletin of the Seismological Society of America, 1992, 82(1):505-510.
[31] Zhao X John, Zhou Shuanglin, Gao Pingjun, et al. An earthquake classification scheme adapted for Japan determined by the goodness of fit for ground-motion prediction equations[J]. Bulletin of the Seismological Society of America, 2015, 105(5):2750-2763.
[32] Jiang Fei, Zhao X John. A ground-motion prediction equation for vertical spectra of strong-motion records from the subduction slab events in Japan using site class as the site term[J]. Bulletin of the Seismological Society of America, 2017, 107(5):2328-2341.

相似文献/References:

[1]梅雨辰,李鸿晶,孙广俊.基于微分求积原理的地震反应谱计算方法[J].地震工程与工程振动,2017,01(05):025.[doi:10.13197/j.eeev.2017.05.25.meiyc.003]
 MEI Yuchen,LI Hongjing,SUN Guangjun.A method of seismic response spectrum calculation by the differential quadrature rule[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2017,01(05):025.[doi:10.13197/j.eeev.2017.05.25.meiyc.003]

备注/Memo

备注/Memo:
收稿日期:2017-11-21;改回日期:2018-02-10。
基金项目:国家自然科学基金项目(51578470)
作者简介:张衡(1993-),男,硕士研究生,主要从事地震数据分析研究.E-mail:18792499404@163.com
更新日期/Last Update: 1900-01-01