[1]徐璐,柯世堂.基于现场实测冷却塔最不利荷载组合的探讨及参数灵敏度分析[J].地震工程与工程振动,2018,(05):179-189.[doi:10.13197/j.eeev.2018.05.179.xul.021]
 XU Lu,KE Shitang.Discussion on the most unfavorable load combination and sensitivity analysis of parameters for the cooling tower based on field measured[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2018,(05):179-189.[doi:10.13197/j.eeev.2018.05.179.xul.021]
点击复制

基于现场实测冷却塔最不利荷载组合的探讨及参数灵敏度分析
分享到:

《地震工程与工程振动》[ISSN:/CN:]

卷:
期数:
2018年05
页码:
179-189
栏目:
论文
出版日期:
2018-10-31

文章信息/Info

Title:
Discussion on the most unfavorable load combination and sensitivity analysis of parameters for the cooling tower based on field measured
作者:
徐璐 柯世堂
南京航空航天大学 土木工程系, 江苏 南京 210016
Author(s):
XU Lu KE Shitang
Nanjing University of Aeronautics and Astronautics, Department of Civil Engineering, Nanjing 210016, China
关键词:
大型冷却塔阻尼比荷载组合受力性能控制工况
Keywords:
large cooling towerdamping ratioload combinationforce performancecontrol condition
分类号:
TU279.7+41
DOI:
10.13197/j.eeev.2018.05.179.xul.021
摘要:
现有研究缺乏真实阻尼比下大型冷却塔荷载组合受力性能和最不利控制工况的研究。以国内某大型冷却塔为对象,基于现场实测获得的真实阻尼比识别结果(2.16%),采用反应谱方法计算真实及规范(5%)阻尼比下大型冷却塔地震响应,并结合自重、风、冬温和日照下单项荷载计算结果,进行了8个基本和偶然荷载组合工况的对比分析。在此基础上,提炼出阻尼比对冷却塔不同部位荷载组合受力分布特性的影响规律,定量分析了规范及真实阻尼比对偶然荷载组合的影响程度;并将偶然与基本荷载组合工况下最不利内力结果进行对比分析,归纳给出了此类大型冷却塔最不利受力控制工况;最后,采用扰动法对荷载组合中的控制载荷进行了灵敏度分析,提炼出影响控制荷载的关键因素。研究表明:真实阻尼比下的工况5为偶然荷载组合的控制工况,较规范阻尼比下大约59.58%,但仍小于基本荷载组合工况1的结果。综合说明在考虑真实阻尼比时,仍可采用现行规范基本荷载组合中的工况1进行此类大型冷却塔结构内力设计,其结果安全可靠;地震设防烈度对结构受力最为敏感,在结构设计时需谨慎对待。
Abstract:
The existing researches lack the study on the performance of the load combination and the most unfavorable control condition of the large cooling tower under the true damping ratio. Based on the results of real damping ratios obtained from a large scale cooling tower in China, the response spectrum method is used to calculate the seismic response of a large cooling tower under real and normalized damping ratios. And combined with the calculation results of single load of gravity, wind, winter and sunshine, eight basic and accidental load combinations are analyzed. On this basis, the influence of damping ratio on the load distribution characteristics of different load combinations in the cooling tower is extracted, and the influence degree of the norm and true damping ratio to the accidental load combination is analyzed quantitatively. The results of the analysis of the most unfavorable internal forces under the combined conditions of accident and basic loads are given. Finally, the perturbation method is used to analyze the sensitivity of the load in the load combination, and the key factors that affect the control load are extracted. The results show that the working condition of the true damping ratio is 5 under the condition of the accidental load combination, which is about fifty-nine point five eight percent lower than that of the normal damping ratio, but still less than that of the basic load combination condition of 1. It is shown that when considering the real damping ratio, the internal force of the structure can be used for the design of the structure of this kind of large-scale cooling tower, which is 1.

参考文献/References:

[1] Haririardebili M A, Akbari M, Mirzabozorg H. Impact of load combination on the stability analysis of an arch dam subjected to stochastic non-uniform excitations[J]. European Journal of Environmental & Civil Engineering, 2015, 19(3):263-277.
[2] Lastkombination F. Load combination[M]. Springer Berlin Heidelberg, 2014.
[3] 郎路光. 多种荷载组合下超大型空冷塔筒体静力响应与可靠度分析[D]. 哈尔滨:哈尔滨工业大学, 2015. LANG Luguang. Static response and reliability analysis of super-large air cooling towers tube under combination of multiple loads[D]. Harbin:Harbin Institute of Technology, 2015.(in Chinese)
[4] 肖南, 苗永志, 赵文争. 子午向几何缺陷冷却塔的结构性能分析[J]. 浙江大学学报工学版, 2010, 44(4):819-825. XIAO Nan, MIAO Yongzhi, ZHAO Wenzheng. Structural performance analysis of a cooling-tower shell with meridional geometric imperfections[J]. Journal of Zhejiang University of Engineering Science, 2010, 44(4):819-825.(in Chinese)
[5] 邵亚会, 柯世堂, 葛耀君,等. 超大型排烟冷却塔强度及稳定性能分析[J]. 工业建筑, 2014, 44(3):80-84. SHAO Yahui, KE Shitang, GE Yaojun, et al. The strength and stability analysis of super large cooling towers with gas flue[J]. Industrial Construction, 2014, 44(3):80-84.(in Chinese)
[6] 张宗方. 大型自然通风冷却塔失效分析与优化设计[D]. 大连:大连理工大学, 2011. ZHANG Zongfang. Failure analysis and optimization design of large-scale natural draft cooling tower[D]. Dalian:Dalian University of Technology, 2011.(in Chinese)
[7] 张军锋, 葛耀君. 双曲冷却塔温度效应分析[J]. 华中科技大学学报:自然科学版, 2012, 40(11):63-67. ZHANG Junfeng, GE Yaojun. Study on the thermal effects of hyperboloidal cooling towers[J]. Journal of Huazhong University of Science and Technology:Uatural Science Edition), 2012, 40(11):63-67.(in Chinese)
[8] 李晶, 曹登庆, 刘绍奎,等. 基于解析模态分解和希尔伯特变换的模态参数辨识新方法[J]. 振动与冲击, 2016, 35(1):34-39. LI Jing, CAO Dengqing, LIU Shaokui, et al. A new method for modal parameter identification based on analytical modal decomposition and Hilbert transformation[J]. Journal of Vibration and Shock, 2016, 35(1):34-39.(in Chinese)
[9] Kim H M, Vanhorn D A, Doiron H H. Free-decay time-domain modal identification for large space structures[J]. Journal of Guidance Control & Dynamics, 2015, 17(3):513-519.
[10] Pioldi F, Rizzi E. On modal identification of structures from earthquake response signals by a refined Frequency Domain Decomposition approach[C]//Conference of the Associazione Italiana Di Meccanica Teorica E Applicata. 2015.
[11] 秦世强, 康俊涛, 孔凡. 桥梁工作模态分析中阻尼比识别的离散性研究[J]. 振动、测试与诊断, 2016, 36(1):42-48. QIN Shiqiang, KANG Juntao, KONG Fan. Study on the dispersion of damping ratio identification in bridge modal analysis[J]. Journal of Vibration and the Test and Diagnosis, 2016, 36(1):42-48.(in Chinese)
[12] 柯世堂, 朱鹏, 余玮, 等. 冷却塔阻尼特性研报告[R]. 南京:南京航空航天大学, 2016. KE Shitang, ZHU Peng, YU Wei, et al. Research study of damping characteristics for cooling towers[R]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2016.(in Chinese)
[13] 张书兵, 王景全, 殷惠光. 组合梁等效阻尼比的两种计算方法及对比研究[J]. 建筑结构学报, 2013, 34(S1):395-400. ZHANG Shubing, WANG Jingquan, YIN Huiguang. Comparative study of two calculation methods for equivalent damping ratios of composite beams[J]. Journal of Building Structures, 2013, 34(S1):395-400.(in Chinese)
[14] 曹加良, 施卫星, 刘文光. 长周期隔震结构基于反应谱理论的地震响应预测研究[J]. 土木工程学报, 2011, 44(9):42-50. CAO Jialiang, SHI Weixing, LI Wenguang. The seismic response prediction of long-period seismic isolated structures based on response spectrum theory[J]. Chian Civil Engineering Journal, 2011, 44(9):42-50.(in Chinese)
[15] GB/T50102-2014工业循环水冷却设计规范[S]. 北京:中国计划出版社, 2014. GB/T50102-2014 Industrial Circulating Water Cooling Design Specification[S]. Beijing:China Planning Press, 2014.(in Chinese)
[16] GB50191-2012构筑物抗震设计规范[S]. 北京:中国计划出版社, 2012. GB50191-2012 Code for Seismic Design of Special Structures[S]. Beijing:China Planning Press, 2012.(in Chinese)
[17] 甘高凡, 傅继阳, 饶瑞. 设计参数对大跨屋盖结构自振频率的敏感度分析[J]. 广州大学学报:自然科学版, 2011, 10(6):73-78. GAN Gaofan, FU Jiyang, RAO Rui. Sensitivity analysis of design parameters on natural frequency for long-span roof[J]. Journal of Guangzhou University:Natural Science Edition, 2011, 10(6):73-78.(in Chinese)

相似文献/References:

[1]施卫星,魏丹,韩瑞龙.钢结构房屋动力特性脉动法测试研究[J].地震工程与工程振动,2012,(01):114.
 SHI Weixing,WEI Dan,HAN Ruilong.Field tests and research on the dynamic characteristics of steel structure buildings under ambient vibration[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2012,(05):114.
[2]郭迅,王玉梅,何福.典型高墩大跨混凝土刚构桥模态参数测试[J].地震工程与工程振动,2012,(05):089.
 GUO Xun,WANG Yumei,HE Fu.Modal parameters identification of a typical reinforced concrete rigid frame bridge with super high piers and long spans[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2012,(05):089.
[3]胡仲有,骆亚生,李焱.不同地区黄土阻尼比变化特性试验研究[J].地震工程与工程振动,2010,(02):167.
 HU Zhongyou,LUO Yasheng,LI Yan.Experimental study on damping ratio variation characteristics of loess in different areas[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2010,(05):167.
[4]陈勇,赵凤新,胡聿贤,等.不同阻尼比反应谱的转换关系[J].地震工程与工程振动,2010,(04):017.
 CHEN Yong,ZHAO Fengxin,HU Yuxian,et al.Transfer relationship among response spectra with different damping ratios[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2010,(05):017.
[5]田启强,丰彪,王自法,等.地震总输入能自抵耗效应研究[J].地震工程与工程振动,2010,(06):065.
 TIAN Qiqiang,FENG Biao,WANG Zifa,et al.Study on self-dissipation effect of earthquake total input energy[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2010,(05):065.
[6]施卫星,王进.钢筋混凝土框架结构动力特性研究[J].地震工程与工程振动,2010,(06):087.
 SHI Weixing,Wang Jin.Research on dynamic characteristics of reinforced concrete frame structures[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2010,(05):087.
[7]王志杰,骆亚生.初始主应力方向角对黄土动变形特性影响研究[J].地震工程与工程振动,2013,04(01):184.
 WANG Zhijie,LUO Yasheng.Effects of initial angles of principal stresses on dynamic deformation properties of loess[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2013,04(05):184.
[8]李博,Zeng Xiangwu,王艳茹.大应变条件海水浸蚀下人工胶结土动力特性研究[J].地震工程与工程振动,2013,04(01):192.
 LI Bo,ZENG Xiangwu,WANG Yanru.Effect of sea water attack on dynamic behavior of artificially cemented sand in large strain[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2013,04(05):192.
[9]李国强,胡大柱,孙飞飞,等.屈曲约束支撑半刚性连接框架弹塑性地震位移简化计算[J].地震工程与工程振动,2009,(04):033.
 LI Guoqian,HU Dazhu,SUN Feifei,et al.A simplified method for determining elasto-plastic drift of buckling restrained braced frame with semi-rigid connections[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2009,(05):033.
[10]李鹏,段启伟.基于复阻尼模型的连续刚构桥地震响应分析[J].地震工程与工程振动,2013,04(04):095.
 LI Peng,DUAN Qiwei.Analysis of seismic responses of continuous rigid-framed bridge based on complex damping[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2013,04(05):095.

备注/Memo

备注/Memo:
收稿日期:2017-12-06;改回日期:2018-04-06。
基金项目:国家自然科学基金面上项目(51878351,51208254);江苏省优秀青年基金项目(BK20160083);中国博士后科学基金项目(2013M530255,1202006B);江苏高校优势学科建设工程基金项目
作者简介:徐璐(1991-),女,硕士研究生,主要从事结构抗风与抗震研究.E-mail:luxunuaa@163.com
通讯作者:柯世堂(1982-),男,教授,博士,主要从事结构工程与风洞试验研究.
更新日期/Last Update: 1900-01-01