[1]许华南,张剑伟,周丽维,等.出平面荷载对各向异性半空间内圆孔的Green函数解[J].地震工程与工程振动,2018,(05):190-197.[doi:10.13197/j.eeev.2018.05.190.xuhn.022]
 XU Huanan,ZHANG Jianwei,ZHOU Liwei,et al.Green’s function solution for circular cavity in anisotropic half-space impacted by out-plane load[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2018,(05):190-197.[doi:10.13197/j.eeev.2018.05.190.xuhn.022]
点击复制

出平面荷载对各向异性半空间内圆孔的Green函数解
分享到:

《地震工程与工程振动》[ISSN:/CN:]

卷:
期数:
2018年05
页码:
190-197
栏目:
论文
出版日期:
2018-10-31

文章信息/Info

Title:
Green’s function solution for circular cavity in anisotropic half-space impacted by out-plane load
作者:
许华南1 张剑伟2 周丽维3 杨在林4
1. 龙岩学院 资源工程学院, 福建 龙岩 364012;
2. 沈阳航空航天大学 航空航天工程学院, 辽宁 沈阳 110000;
3. 龙岩学院 后勤基建处, 福建 龙岩 364012;
4. 哈尔滨工程大学 航天与建筑工程学院, 黑龙江 哈尔滨 150001
Author(s):
XU Huanan1 ZHANG Jianwei2 ZHOU Liwei3 YANG Zailin4
1. School of Resource Engineering, Longyan University, Longyan 364012, China;
2. School of Safety Engineering, Shenyang Aerospace University, Shenyang 110000, China;
3. Department of Logistics and Infrastructure, Longyan University, Longyan 364012, China;
4. College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin 150001, China
关键词:
出平面线源荷载Green函数各向异性半空间圆孔动应力集中系数
Keywords:
Out-plane line source loadGreen’s functionanisotropic elastic half-spacecircular cavitydynamic stress concentration factor (DSCF)
分类号:
O343.4;O347.3
DOI:
10.13197/j.eeev.2018.05.190.xuhn.022
摘要:
采用波函数展开法和复变函数法研究了出平面线源荷载对各向异性半空间内圆形孔洞的Green函数解。首先利用复变函数法构造圆形孔洞激发的含未知系数的散射场,得到介质内总的位移场和应力场。其次根据边界条件,利用Fourier积分变换推导出一系列求解未知系数的复系数代数方程组,截断有限项以控制精度,求出未知系数,进而得到Green函数解。最后通过大量算例讨论了不同参数对圆孔周边的动应力集中系数的影响规律,验证Green函数的精确性,为各向异性半空间内复杂缺陷的地震动和动力学研究提供理论基础。
Abstract:
The methods of wave functions expansion and complex variable function are used to employ Green’s function solution for circular cavity in anisotropic elastic half-space containing elliptical elastic inclusion impacted by an out-plane line source load. Firstly, complex variable function method is developed to construct scattering wave field with unknown coefficient excited by circular cavity, and consequently, total displacement and stress field are obtained. Then, according to the boundary conditions, a series of complex algebraic equations to determine the unknown coefficients are derived by Fourier integral transform, which can be solved by limited terms truncation to control precision, and the Green’s function solution is then solved. Lastly, vast numerical examples are provided to discuss influence of different parameters on dynamic stress concentration factor (DSCF) around the cavity to verify accuracy of the Green’s function, and the obtained results can be referenced by study on ground motion and dynamic response of complex defects in anisotropic elastic half-space.

参考文献/References:

[1] 林宏, 刘殿魁. 半无限空间中圆形孔洞周围SH波的散射[J].地震工程与工程振动, 2002, 22(2):9-15. LIN Hong, LIU Diankui. Scattering of SH-wave around a circular cavity in half space[J]. Earthquake Engineering and Engineering Dynamics, 2002, 22(2):9-15.(in Chinese)
[2] 齐辉, 王艳, 刘殿魁. 半无限空间界面附近SH波对圆形衬砌的散射[J]. 地震工程与工程振动. 2003, 23(3):41-46. QI Hui, WANG Yan, LIU Diankui. Dynamic analysis of shallow-embedded lining structure by incident SH-wave[J]. Earthquake Engineering and Engineering Dynamics, 2003, 23(3):41-46.(in Chinese)
[3] Luo H, Lee V W, Liang J W. Anti-plane (SH) waves diffraction by an underground semi-circular cavity:analytical solution[J]. Earthquake Engineering and Engineering Vibration, 2010.9, 9(3):385-396.
[4] Yang Z L, Hei B P, Wang Y. Scattering by a circular cavity in a radially inhomogeneous medium with wave velocity variation[J]. Applied Mathematics and Mechanics (English Edition). 2015. 36(5):599-608.
[5] Lee V W, Liu W Y. Two-dimensional scattering and diffraction of P-and SV-waves around a semi-circular canyon in an elastic half-space:an analytic solution via a stress-free wave function[J]. Soil Dynamics and Earthquake Engineering, 2014, 63:110-119.
[6] 梁建文, 丁美, 杜金金. 柱面SH波在地下圆形衬砌洞室周围散射解析解[J]. 地震工程与工程振动, 2013, 33(1):1-7. LIANG Jianwen, DING Mei, DU Jinjin. Diffraction of cylindrical SH waves around circular lined cavity:analytical solution[J]. Earthquake Engineering and Engineering Dynamics, 2013, 33(1):1-7.(in Chinese)
[7] 刘殿魁, 刘宏伟. 孔边裂纹对SH波散射及动应力强度因子[J]. 力学学报, 1999, 31(3):292-299. LIU Diankui, LIU Hongwei. Scattering of SH-wave by cracks originating at a circular hole edge and dynamics tress intensity factor[J]. Acta Mechanica Sinica, 1999, 31(3):292-299.(in Chinese)
[8] Yang Z L, Chen Z G, Liu D K. Scattering of SH wave by an interacting mode Ⅲ crack and a circular cavity in half space[J]. Key Eng. Mater., 2007:348-349, 861-864.
[9] 刘殿魁. 各向异性介质中SH波引起的圆孔附近的动应力集中[J]. 力学学报, 1988, 20(5):443-452. LIU Diankui. Dynamic stress concentration around a circular cavity by SH wave in an anisotropic media[J]. Acta Mechanica Sinica, 1988, 20(5):443-452.(in Chinese)
[10] 刘殿魁, 韩峰. SH波对各向异性凹陷地形的散射[J].地震工程与工程振动, 1990, 10(2):11-24. LIU Diankui, HAN Feng. Scattering of plane SH wave by canyon topography in anisotropic medium[J]. Earthquake Engineering and Engineering Dynamics,1990, 10(2):11-24.(in Chinese)
[11] Liu D K, Han F. Scattering of plane SH wave by noncircular cavity in anisotropic media[J]. Journal of Applied Mechanics, Transactions ASME, 1993, 60(3):769-772.
[12] 陈志刚. SH波作用下各向异性弹性半空间中浅埋圆孔附近的动应力集中研究[J]. 岩土力学,2012.3, 33(3):899-905. CHEN Zhigang. Dynamic stress concentration around shallow cylindrical cavity by SH wave in anisotropically elastic half-space[J]. Rock and Soil Mechanics, 2012.3, 33(3):899-905.(in Chinese)
[13] 陈志刚. 正交各向异性半圆形沉积谷对SH波的散射[J]. 地震工程与工程振动,2016, 1(2):68-74. CHEN Zhigang. Scattering of an orthotropic semi-cylindrical alluvial valley by SH waves[J]. Earthquake Engineering and Engineering Dynamics, 2016, 1(2):68-74.(in Chinese)
[14] Eslami H, Gatmiria B. Two formulations for dynamic response of a cylindrical cavity in crossanisotropic porous media[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2010, 34(4):331-356.
[15] 钟伟芳, 钱维平. 各向异性体内含任意孔洞对反平面波散射的边界元方法[J]. 固体力学学报, 1990, 11(4):285-297. ZHONG Weifang, QIAN Weiping. A boundary element method for calculation the SH wave scattering from arbitrrarily shaped holes in an anisotropic mediun[J]. Acta Mechanica Solida Sinica, 1990, 11(4):285-297.(in Chinese)
[16] 杜修力, 熊建国. 各向异性弹性层中SH波传播的边界元法[J]. 工程力学, 1989, 6(3):10-18. DU Xiuli, XIONG Jianguo. Propagation of SH wave in anisotropic midium and the solution by boundary element method[J]. Engineering Mechanices, 1989, 6(3):10-18.(in Chinese)

相似文献/References:

[1]吕晓棠,刘殿魁.SH波作用下浅埋裂纹附近半圆形凸起的地震动[J].地震工程与工程振动,2008,(03):016.
 LÜ,Xiaotang,LIU Diankui.Antiplane response of a semi-cylindrical hill above a subsurface crack to incident SH waves[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2008,(05):016.
[2]许华南,张剑伟,杨在林,等.各向异性弹性半空间内圆孔与裂纹对SH波的地震动[J].地震工程与工程振动,2017,01(04):165.[doi:10.13197/j.eeev.2017.04.165.xuhn.019]
 XU Huanan,ZHANG Jianwei,YANG Zailin,et al.Ground motion of SH-waves by circular cavity and crack in anisotropic elastic half-space[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2017,01(05):165.[doi:10.13197/j.eeev.2017.04.165.xuhn.019]

备注/Memo

备注/Memo:
收稿日期:2018-01-15;改回日期:2018-04-05。
基金项目:福建省教育厅中青年教师教育科研项目(JAT160481);龙岩学院博士科研启动基金项目(LB2014012)
作者简介:许华南(1985-),男,讲师,博士,主要从事弹性波动理论与应用研究.E-mail:hntiger_86@126.com
通讯作者:杨在林(1971-),男,教授,博士,主要从事弹性波动理论及应用方面的研究工作.E-mail:yangzailin00@163.com
更新日期/Last Update: 1900-01-01