[1]陈伏彬,蔡虬瑞,翁兰溪,等.大跨开合屋盖风荷载与风致响应试验与数值计算研究[J].地震工程与工程振动,2019,39(01):088-95.[doi:10.13197/j.eeev.2019.01.88.chenfb.011]
 CHEN Fubin,CAI Qiurui,WENG Lanxi,et al.Investigation on wind load and wind-induced response of the large-span retractable roof based on experiment and numerical calculation[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2019,39(01):088-95.[doi:10.13197/j.eeev.2019.01.88.chenfb.011]
点击复制

大跨开合屋盖风荷载与风致响应试验与数值计算研究
分享到:

《地震工程与工程振动》[ISSN:/CN:]

卷:
39
期数:
2019年01
页码:
088-95
栏目:
论文
出版日期:
2019-02-28

文章信息/Info

Title:
Investigation on wind load and wind-induced response of the large-span retractable roof based on experiment and numerical calculation
作者:
陈伏彬1 蔡虬瑞1 翁兰溪2 周晋芳1 李秋胜3
1. 长沙理工大学 土木工程学院, 湖南 长沙 410114;
2. 中国电建福建省电力勘测设计院, 福建 福州 350000;
3. 香港城市大学 建筑与土木工程系, 香港 999077
Author(s):
CHEN Fubin1 CAI Qiurui1 WENG Lanxi2 ZHOU Jinfang1 LI Qiusheng3
1. School of Civil Engineering, Changsha University of Science & Technology, Changsha 410114, China;
2. Power China Fujian Electric Power Survey & Design Institute Co., LTD. Fuzhou 35000, China;
3. Department of Architecture and Civil Engineering, C
关键词:
大跨开合屋盖风荷载风致响应风振系数风洞试验
Keywords:
large-span retractable roofwind loadwind-induced responsewind vibration coefficientwind tunnel test
分类号:
TU973.32
DOI:
10.13197/j.eeev.2019.01.88.chenfb.011
摘要:
为研究屋盖开孔对大跨结构风效应的影响,在边界层风洞中开展了大跨开合屋盖刚性模型风洞测压试验,分析了结构表面风荷载分布特征,基于时域分析法研究了屋盖开合对风致响应的影响。结果表明:大跨结构模态密集,第一阶模态能量最大,高阶成分的贡献不容忽视;屋盖开洞能有效的减小屋面风荷载,降低位移响应与加速度响应,减小风振系数。研究结果可为大跨开合屋盖风荷载设计提供参考。
Abstract:
To study the effect of roof opening on wind effect of large-span roof structure, wind tunnel tests on a large-span retractable roof were carried out in a boundary layer wind tunnel, then the characteristics of wind loads on the roof were studied, and the wind-induced responses influenced by the opening were investigated in time domain. The results induct that the models for the large-span structure are concentrated, the largest modal energy occurred in first model, and the contributions from higher order are not ignored. The wind loads reduced when the roof with opening, the same tendency was found for wind induced displacement response and acceleration response. The output will be a reference for wind load design of large-span retractable roof.

参考文献/References:

[1] Kawai H. Structure of conical vortices related with suction fluctuation on a flat roof in oblique smooth and turbulence flows[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1997, 69-71: 579-588.
[2] LI B, YANG Q, TIAN Y, et al. Wind load characteristics of retractable roof of New National Tennis Center[J]. China Civil Engineering Journal, 2010, 43: 112-118.
[3] Banks D, Meroney R N, Sarkar P P, et al. Flow visualization of conical vortices on flat roofs with simultaneous surface pressure measurement[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2000, 84(1): 65-85.
[4] Kawai H, Nishimura G. Characteristics of fluctuating suction and conical vortices on a flat roof in oblique flow[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1996, 211-225.
[5] Banks D, Meroney R N. A model of roof-top surface pressures produced by conical vortices: Evaluation and implications[J]. Wind and Structures An International Journal, 2001, 4(4): 279-298.
[6] Nishimura H, Kawai H. Switching phenomenon of conical vortices on the flat roof of a low-rise building[J]. Jotrnal of Wind Engineering (Japan), 2010, 4(125): 99-106.
[7] Marwood R, Wood C J. Conical vortex movement and its effect on roof pressures[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1997, 69-71: 589-595.
[8] YE Jihon, DONG Xin. Wind pressure features of large-span flat roof in different wind fields induced by conical vortex[J]. Journal-Chinese Institute of Engineers, 2015, 38(8): 1-16.
[9] Kawai H. Local peak pressure and conical vortex on building[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(4): 251-263.
[10] Kumar K S, Stathopoulos T. Wind loads on low building roofs: a stochastic perspective[J]. Journal of Journal of Structural Engineering, 2000, 126(8): 944-956.
[11] 秦乐, 田玉基. 某大跨平屋盖表面风荷载特性研究[J]. 建筑结构, 2012, 42(2): 160-164. QIN Le, TIAN Yuji. Research on wind load on a large-span plan roof[J]. Building Structure, 2012, 42(2): 160-164. (in Chinese)
[12] 李寿科, 李寿英, 陈政清. 开合屋盖体育场风荷载特性试验研究[J]. 建筑结构学报, 2010, 31(10): 17-23. LI Shouke, LI Shouying, CHEN Zhengqing. Experimental investigation on wind loading of a stadium with a retractable roof[J]. Journal of Building Structures, 2010, 31(10): 17-23. (in Chinese)
[13] 孙瑛, 武岳, 林志兴, 等. 大跨度平屋盖表面的特征湍流研究[J]. 空气动力学学报, 2007, 25(3): 319-324. SUN Ying, WU Yue, LIN Zhixing, et al. Characteristics of signature turbulence on long span flat roofs[J]. ACTA Aerodynamic Sinica, 2007, 25(3): 319-324. (in Chinese)
[14] 陈伏彬, 李秋胜, 傅继阳, 等. 大跨屋盖风荷载的频域特性试验研究[J].振动与冲击, 2012, 31(5): 111-117. CHEN Fubin, LI Qiusheng, FU Jiyang, et al. Frequency domain characteristics of wind loads on a long span building roof[J]. Journal of Vibration and Shock, 2012, 31(5): 111-117. (in Chinese)
[15] 陈伏彬, 李秋胜.基于环境激励的大跨结构动力特性识别[J]. 地震工程与工程振动, 2015, 35(1):58-65. CHEN Fubin, LI Qiusheng. Identification of dynamic characteristics of large-span structure based on the ambient excitation[J]. Earthquake Engineering and Engineering Dynamics, 2015, 35(1): 58-65. (in Chinese)

相似文献/References:

[1]李春祥,张静怡.结构最优主动调谐质量阻尼器风致振动控制的研究[J].地震工程与工程振动,2007,27(05):160.
 LI Chunxiang,ZHANG Jingyi.Investigations of vibration control of tall buildings under wind loads using active tuned mass damper[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2007,27(01):160.
[2]李春祥,都敏,韩兵康.基于AR模型模拟超高层建筑的脉动风速时程[J].地震工程与工程振动,2008,28(03):087.
 LI Chunxiang,DU Min,HAN Bingkang.Simulation of fluctuating wind speed time series of super-tall buildings based on AR model[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2008,28(01):087.
[3]瞿伟廉,秦文科,梁政平.基于输电塔风致响应的节点螺栓脱落损伤自动诊断的小波识别方法[J].地震工程与工程振动,2008,28(04):146.
 QU Weilian,QIN Wenke,LIANG Zhengping.The wavelet recognition method of joint bolt looseness damage diagnosis based on the wind-induced responses of transmission towers[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2008,28(01):146.
[4]瞿伟廉,吉柏锋,王锦文.基于改进的OBV模型的下击暴流风荷载模拟[J].地震工程与工程振动,2009,29(01):146.
 QU Weilian,JI Baifeng,WANG Jinwen.Numerical simulation of downburst wind loads based on modified OBV model[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2009,29(01):146.
[5]孙芳锦,冯旭,张大明.大跨度屋盖风压场的条件模拟方法研究[J].地震工程与工程振动,2014,34(06):236.[doi:10.13197/j.eeev.2014.06.236.sunfj.029]
 SUN Fangjin,FENG Xu,ZHANG Daming.Study on conditional simulation of wind pressure fields for large-span roofs[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2014,34(01):236.[doi:10.13197/j.eeev.2014.06.236.sunfj.029]

备注/Memo

备注/Memo:
收稿日期:2018-03-18;改回日期:2018-06-21。
基金项目:国家自然科学基金项目(51778072,51408062);长沙理工大学土木工程湖南省优势特色重点学科创新性项目;湖南省研究生科研创新项目(CX2016B397)
作者简介:陈伏彬(1981-),男,副教授,博士,主要从事大型建筑抗风研究.E-mail:fbchen88@126.com
更新日期/Last Update: 1900-01-01