[1]丁海平,朱越,于彦彦.基于能量的相干函数有效频段范围的选取[J].地震工程与工程振动,2019,39(02):035-45.[doi:10.13197/j.eeev.2019.02.35.dinghp.005]
 DING Haiping,ZHU Yue,YU Yanyan.Selection of effective frequency range for coherencey function based on energy method[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2019,39(02):035-45.[doi:10.13197/j.eeev.2019.02.35.dinghp.005]
点击复制

基于能量的相干函数有效频段范围的选取
分享到:

《地震工程与工程振动》[ISSN:/CN:]

卷:
39
期数:
2019年02
页码:
035-45
栏目:
论文
出版日期:
2019-04-30

文章信息/Info

Title:
Selection of effective frequency range for coherencey function based on energy method
作者:
丁海平12 朱越1 于彦彦1
1. 江苏省结构工程重点实验室(苏州科技大学), 江苏 苏州 215011;
2. 中国地震局 工程力学研究所, 黑龙江 哈尔滨 150080
Author(s):
DING Haiping12 ZHU Yue1 YU Yanyan1
1. Key Laboratory of Structural Engineering of Jiangsu Province(Suzhou University of Science and Technology, Suzhou 215011, China;
2. Institute of Engineering Mechanics, China Earthquake Administration, Harbin 150080, China
关键词:
地震动空间相关性相干函数功率谱截止频率SMART-1台阵
Keywords:
space coherencecoherency functionpower spectrumcut-off frequencySMART-1 array
分类号:
P315.9
DOI:
10.13197/j.eeev.2019.02.35.dinghp.005
摘要:
目前的地震动空间相干函数模型中频率的适用范围存在很大差别。本文利用地震动功率谱所表征的地震动能量在各频段内分布的相对关系,从功率谱-能量的角度,引入能量比的概念,即某一频段范围的功率谱与总功率谱的比值,提出了确定一种相干函数模型有效频段范围的方法。选取了SMART-1台阵第5、33、40和45号地震的水平分量加速度记录进行了对比分析,发现:当频率范围为0~5 Hz时,能量比达到95%以上;当频率范围为0~8 Hz时,频段内的能量已达到总能量的99%左右。因此,建议在进行相干函数模型中参数拟合时,可采用能量比达到95%~99%时对应的频率作为最大频率,从而减少高频成分对拟合结果的影响。
Abstract:
There are great differences in the frequency range in the current spatial coherency function model of ground motion. This paper firstly utilized energy which is characterized by the power spectrum of ground motion and the relative relationship of energy distributions in each frequency band. The concept of energy ratio, i.e. the ratio of power spectrum to total power spectrum in a certain frequency range, is introduced from the viewpoint of power spectrum-energy. So then a method for determining the effective frequency range of coherency function model is proposed. The horizontal component of acceleration records of SMART-1 seismic array Event 5, 33, 40 and 45 are compared and analyzed. It is found that the energy ratio reaches above 95% when the frequency range is 0~5 Hz and 99% of the total energy in the frequency range is 0~8 Hz. Therefore, it is suggested that the maximum frequency corresponding to 95%~99% of the energy ratio can be used in parameter fitting of the coherence function model, which can basically reduce the influence of the relative determinacy of the high-frequency components.

参考文献/References:

[1] Bi K, Hao H, Chouw N. 3D FEM analysis of pounding response of bridge structures at a canyon site to spatially varying ground motions[J]. Advances in Structural Engineering, 2013, 16(4):619-640.
[2] Li C, Hao H, Li H, et al. Modeling and simulation of spatially correlated ground motions at multiple onshore and offshore sites[J]. Journal of Earthquake Engineering, 2017, 21(3):359-383.
[3] Liu C, Gao R. Design method for steel restrainer bars on railway bridges subjected to spatially varying earthquakes[J]. Engineering Structures, 2018, 159:198-212.
[4] Wu Y, Gao Y, Zhang N, et al. Simulation of spatially varying ground motions in V-shaped symmetric canyons[J]. Journal of Earthquake Engineering, 2016, 20(6):992-1010.
[5] Chopra A K, Wang J T. Earthquake response of arch dams to spatially varying ground motion[J]. Earthquake Engineering & Structural Dynamics, 2010, 39(8):887-906.
[6] Park D, Sagong M, Kwak D Y, et al. Simulation of tunnel response under spatially varying ground motion[J]. Soil Dynamics & Earthquake Engineering, 2009, 29(11):1417-1424.
[7] Hao H. Effects of spatial variation of ground motions on large multiply-supported structures[R]. Report No. UCB-EERC-89-07, University of California, Berkeley, 1989.
[8] Loh C H, Lin S G. Directionality and simulation in spatial variation of seismic waves[J]. Engineering Structures, 1990,12(2):134-143.
[9] Abrahamson N A, Schneider J F, Stepp J C. Empirical spatial coherency functions for application to soil-structure interaction analyses[J]. Earthquake Spectra, 1991, 7(1) 1-27.
[10] 刘先明, 叶继红, 李爱群.竖向地震动场的空间相干函数模型[J]. 工程力学, 2004, 21(2):140-144. LIU Xianming, YE Jihong, LI Aiqun. Coherency function model of vertical ground Motion[J]. Engineering Mechanics, 2004, 21(2):140-144. (in Chinese)
[11] 李英民, 吴哲骞, 陈辉国.地震动的空间变化特性分析与修正相干模型[J]. 振动与冲击, 2013,32(2):164-170. LI Yingmin, WU Zheqian, CHEN Huiguo. Analysis and modeling for characteristics of spatially varying ground motion[J]. Journal of vibration and shock, 2013,32(2):164-170. (in Chinese)
[12] 阿布都瓦里斯, 俞瑞芳, 俞言祥.基于汶川地震加速度记录的地震动相干函数变化特性[J]. 振动与冲击, 2013, 32(16):70-75. Abuduwalisi, YU Ruifang, YU Yanxiang. Spatial variation of ground motions based on wenchuan acceleration records[J]. Journal of vibration and shock, 2013, 32(16):70-75. (in Chinese)
[13] Zerva A, T Harada T. Effect of surface layer stochasticity on seismic ground motion coherence and strain estimates[J]. Soil Dynamics & Earthquake Engineering, 1997,16(7/8):445-457.
[14] Abrahamson, N. A., Estimation of seismic wave coherency and rupture velocity using the SMART-1 strong motion array recordings[R]. 1985, Report No. UCB/EERC-8502,Earthquake Eng. Res. Center, University of California at Berkeley.
[15] Somerville P G, Mclaren J P, Sen M K, et al. The influence of site conditions on the spatial incoherence of ground motions[J]. Structural Safety, 1991, 10(1-3):1-13.
[16] Kiureghian A D. A coherency model for spatially varying ground motions[J]. Earthquake Engineering & Structural Dynamics, 2015, 25(1):99-111.
[17] 丁海平,罗翼, 等,截止频率的取值对地震动空间相干函数统计结果的影响[J].地震学报, 2018,40(5):1-9. DING Haiping, LUO Yi, et al. Influence of cut-off frequency on statistical results of spatial coherence function of ground motion[J]. Acta Seismologica Sinica, 2018,40(5):1-9. (in Chinese)
[18] 胡广书. 数字信号处理:理论,算法与实现[M]. 3版. 北京:清华大学出版社, 2012. HU Guangshu. Digital signal processing:theory, algorithm and Implementation[M]. 3rd ed. Beijing:Tsinghua University Press. 2012. (in Chinese)
[19] Zerva A. Spatial variation of seismic ground motions[M]. Boca Raton:CRC Press, Taylor and Francis Group,2009.
[20] Bolt B A, Loh C H. Penzien J, et al. Preliminary report on the SMART-1 strong motion array in Taiwan[R]. Earthquake Engineering Research Center Report No. UCB/EERC-82/13, University of California, Berkeley, CA, 1982.
[21] Oliveira C S. Variability of strong ground motion characteristics obtained in SMART-1 array[C]//Proc 12th Regional Seminar on Earthquake Engineering, Halkidiki, Greece, 1985.

相似文献/References:

[1]王君杰,陈虎.面向设计应用的地震动空间相干函数模型[J].地震工程与工程振动,2007,27(01):016.
 Wang Junjie,Chen Hu.A spatial coherence model of seismic ground motion for design application[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2007,27(02):016.
[2]李杰,陈原.非一致激励条件下工程场地地震动相干函数的数值模拟——Ⅰ分析原理和方法[J].地震工程与工程振动,2006,26(01):030.
 Li Jie,Chen Yuan.Numerical simulation of coherency function of ground motion under inconsistent excitations: I theories and method[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2006,26(02):030.
[3]陈原,李杰.非一致激励条件下工程场地地震动相干函数的数值模拟——Ⅱ分析方法的应用[J].地震工程与工程振动,2006,26(01):036.
 Chen Yuan,Li Jie.Numerical simulation of coherency function of ground motion under inconsistent excitations:Ⅱ applications[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2006,26(02):036.
[4]饶威波,丁海平,罗翼.台站间距d的分布对地震动空间相干函数的影响[J].地震工程与工程振动,2018,38(03):103.[doi:10.13197/j.eeev.2018.03.103.raowb.012]
 RAO Weibo,DING Haiping,LUO Yi.The influence of the distribution of station distance d on the ground motion’s coherence function[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2018,38(02):103.[doi:10.13197/j.eeev.2018.03.103.raowb.012]

备注/Memo

备注/Memo:
收稿日期:2018-10-9;改回日期:2018-12-21。
基金项目:国家自然科学基金项目(51678383)
作者简介:丁海平(1966-),男,教授,博士,主要从事地震工程和防灾减灾工程研究.E-mail:hpding@126.com
更新日期/Last Update: 1900-01-01