[1]庄海洋,周家甫,陈苏,等.微倾斜可液化场地中地铁地下结构地震反应的振动台模型试验研究[J].地震工程与工程振动,2019,39(02):046-56.[doi:10.13197/j.eeev.2019.02.46.zhuanghy.006]
 ZHUANG Haiyang,ZHOU Jiafu,CHEN Su,et al.Earthquake responses of subway underground structures buried in a liquefiable foundation with a slight inclined ground surface by the shaking table test[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2019,39(02):046-56.[doi:10.13197/j.eeev.2019.02.46.zhuanghy.006]
点击复制

微倾斜可液化场地中地铁地下结构地震反应的振动台模型试验研究
分享到:

《地震工程与工程振动》[ISSN:/CN:]

卷:
39
期数:
2019年02
页码:
046-56
栏目:
论文
出版日期:
2019-04-30

文章信息/Info

Title:
Earthquake responses of subway underground structures buried in a liquefiable foundation with a slight inclined ground surface by the shaking table test
作者:
庄海洋1 周家甫1 陈苏2 陈国兴1
1. 南京工业大学 岩土工程研究所, 江苏 南京 2100091;
2. 中国地震局 地球物理研究所, 北京 100124
Author(s):
ZHUANG Haiyang1 ZHOU Jiafu1 CHEN Su2 CHEN Guoxing1
1. Institute of Geotechnical Engineering, Nanjing Tech University, Nanjing 210009, China;
2. Institute of Geophysics, China Earthquake Administration, Beijing 100124, China
关键词:
微倾斜场地砂土液化地铁地下车站结构区间隧道振动台模型试验
Keywords:
slight inclined groundsand liquefactionunderground subway stationshaking table test
分类号:
TU435
DOI:
10.13197/j.eeev.2019.02.46.zhuanghy.006
摘要:
微倾斜场地砂土液化产生的土层侧移对地面结构和埋于其中的地下结构都造成了严重的地震破坏,也将会对地铁大型地下结构的地震安全造成严重的威胁。同时,地铁地下车站与区间隧道的连接部位因结构刚度的突变,必然会造成该部位结构的地震反应区别于标准段结构的地震反应。鉴于此,本文介绍了微倾斜(倾角为6°)可液化场地中两层三跨框架式地铁地下车站和区间隧道连接部位结构地震反应的大型振动台模型试验研究。通过对试验测试结果和试验现象的分析,揭示了微倾斜液化场地中地铁地下车站结构的动力反应规律及其地铁地下车站结构非均匀上浮机理,以及地铁地下车站结构与区间隧道结构的连接对各自动力反应的影响规律。
Abstract:
The liquefaction-induced lateral deformation of ground has leaded to many damages to the ground structures and the underground lifeline engineering, which should also threaten the earthquake safety of the large subway underground structure. Meanwhile, the interaction between the tunnel and the subway station at its connection should also affects its earthquake response. To investigate the earthquake responses of subway underground structure buried in a liquefiable foundation with a slight inclined ground surface, a shaking table test has been completed. According to the test results and phenomena found in the test, it has been found that the underground subway station didn’t float up flatly when the ground surface is inclined, and the mechanics of the underground structure floating has been analyzed. Meanwhile, the dynamic interaction between the tunnel and the subway underground structure has also been investigated by the strain responses of structure along the axial direction.

参考文献/References:

[1] Uenishi K, Sakurai S. Characteristic of the vertical seismic waves associated with the 1995 Hyogo-ken Nanbu (Kobe), Japan earthquake estimated from the failure of the Daikai Underground Station[J]. Earthquake Engineering and Structural Dynamics, 2000, 29(6):813-822.
[2] Iida H, Hiroto T, Yoshida N, et al. Damage to Daikai subway station[J]. Soils and Foundations, 1996:283-300.
[3] Nishiyama S, Muroya K, Haya H, et al. Seismic design of cut and cover tunnel based on damage analyses and experimental studies[J]. Quarterly Report of RTRI, 1999, 40(3):158-164.
[4] Ohtomo K, Suehiro T, Kawai T, et al. Research on streamlining seismic safety evaluation of underground reinforced concrete duct-type structures in nuclear power stations-Part-2. Experimental aspects of laminar shear sand box excitation tests with embedded RC models[J]. Transactions, SMiRT, 2001, 16:1298.
[5] Matsui J, Ohtomo K, Kanaya K. Development and validation of nonlinear dynamic analysis in seismic performance verification of underground RC structures[J]. Journal of Advanced Concrete Technology, 2004, 2(1):25-35.
[6] Tamari Y, Towhata I. Seismic soil-structure interaction of cross sections of flexible underground structures subjected to soil liquefaction[J]. Journal of the Japanese Geotechnical Society, 2003, 43(2):69-87.
[7] Iwatate T, Kobayashi Y, Kusu H, et al. Investigation and shaking table tests of subway structures of the Hyogoken-Nanbu earthquake[C]//In Proceedings of the 12th World Conference on Earthquake Engineering, New Zealand:New Zealand Society for Earthquake Engineering. 2000:1043-1051.
[8] Che A, Iwatate T. Shaking table test and numerical simulation of seismic response of subway structures[J]. WIT Transactions on The Built Environment, 2002, 63.
[9] Moss R E S, Crosariol V A. Scale model shake table testing of an underground tunnel cross section in soft clay[J]. Earthquake Spectra, 2013, 29(4):1413-1440.
[10] 张波. 地铁车站地震破坏机理及密贴组合结构的地震响应研究[D]. 北京:北京工业大学, 2012. ZHANG Bo. Study on seismic failure mechanism of subway station and the seismic response of closely-attached subway structures.[D]. Beijing:Beijing University of Technology, 2012.(in Chinese)
[11] 李积栋, 陶连金, 油新华,等. 超大型Y形柱地铁车站振动台试验研究[J]. 铁道科学与工程学报, 2016, 13(10):2027-2032. LI Jidong, TAO Lianjin, YOU Xinhua, et al. Research on shaking table test of ultra-large subway station with Y-shape column[J]. Journal of Railway Science and Engineering, 2016, 13(10):2027-2032.(in Chinese)
[12] 杨林德, 季倩倩, 郑永来, 等. 软土地铁车站结构的振动台模型试验[J]. 现代隧道技术, 2003, 40(1):7-11. YANG Linde, JI Qianqian, ZHEN Yonglai, et al. Shaking table test on metro station structures in soft soil[J]. Modern Tunnelling Technology, 2003, 40(1):7-11.(in Chinese)
[13] 景立平, 孟宪春, 孙海峰, 等. 三层地铁车站振动台试验分析[J]. 地震工程与工程振动, 2011, 31(6):159-166. JING Liping, MENG Xianchun, SUN Haifeng, et al. Shaking table test analysis of three-story subway station[J]. Earthquake Engineering and Engineering Dynamics, 2011, 31(6):159-166.(in Chinese)
[14] CHEN Jun, SHI Xiaojun, LI Jie. Shaking table test of utility tunnel under non-uniform earthquake wave excitation[J]. Soil Dynamics and Earthquake Engineering, 2010, 30(11):1400-1416.
[15] 陈国兴,庄海洋,程绍革,等. 土-地铁隧道动力相互作用的大型振动台试验:试验方案设计[J]. 地震工程与工程振动, 2006, 26(6):178-183. CHEN Guoxing, ZHUANG Haiyang, CHENG Shaoge, et al. A largescale shaking table test for dynamicsoil-metro tunnel interaction:test scheme[J]. Earthquake Engineering and Engineering Dynamics, 2006, 26(6):178-183.(in Chinese)
[16] CHEN Guoxing, WANG Zhihua, ZUO Xi, et al. Shaking table test on the seismic failure characteristics of a subway station structure on liquefiable ground[J]. Earthquake Engineering & Structural Dynamics, 2013, 42(10):1489-1507.
[17] CHEN Guoxing, CHEN Su, QI Chengzhi, et al. Shaking table tests on a three-arch type subway station structure in a liquefiable soil[J]. Bulletin of Earthquake Engineering, 2015, 13(6):1675-1701.
[18] ZHUANG Haiyang, CHEN Guoxing, HU Zhonghua, et al. Influence of soil liquefaction on the seismic response of a subway station in model tests[J]. Bulletin of Engineering Geology and the Environment, 2016, 75(3):1169-1182.
[19] 庄海洋, 王修信, 陈国兴. 软土层埋深变化对地铁车站结构地震反应的影响规律研究[J]. 岩土工程学报, 2009, 31(8):1258-1266. ZHUANG Haiyang, WANG Xiuxin, CHEN Guoxing. Earthquake responses of subway station with differentdepths of soft soil[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(8):1258-1266.(in Chinese)
[20] 陈继华, 庄海洋, 王伟. 表面倾斜可液化地基变形特性振动台试验研究[J]. 工程勘察, 2013, 41(8):6-10. CHEN Jihua, ZHUANG Haiyang, WANG Wei. Shaking table tests on deformation properties of the cone-shaped liquefaction foundation[J]. Geotechnical Investigation & Surveying, 2013, 41(8):6-10.(in Chinese)

相似文献/References:

[1]王根龙,林玮,蔡晓光.基于Finn本构模型的饱和砂土地震液化分析[J].地震工程与工程振动,2010,30(03):178.
 WANG Genlong,LIN Wei,CAI Xiaoguang.Seismic liquefaction analysis of saturated sand soil based on Finn constitutive model[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2010,30(02):178.
[2]王根龙,刘奇斌,刘红帅.液化型路堤边坡地震安全性分析[J].地震工程与工程振动,2010,30(04):172.
 WANG Genlong,LIU Qibin,LIU Hongshui.Safety analysis of embankment slope with seismic liquefaction problems[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2010,30(02):172.
[3]董林,胡伟华,曹振中,等.新疆巴楚地震液化宏观现象的对比分析[J].地震工程与工程振动,2010,30(06):179.
 DONG Lin,HU Weihua,CAO Zhenzhong,et al.Comparative analysis of soil liquefaction macro-phenomena in Bachu earthquake[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2010,30(02):179.
[4]陈贵清,郝婷玥,吴班,等.长输管道抗震研究的新进展[J].地震工程与工程振动,2006,26(03):193.
 Chen Guiqing,Hao Tingyue,Wu Ban,et al.New advances in seismic research of long-distance transportation pipes[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2006,26(02):193.
[5]徐令宇,王国新,蔡飞,等.可液化场地地震反应完全耦合动力分析及其验证[J].地震工程与工程振动,2014,34(06):136.[doi:10.13197/j.eeev.2014.06.136.xuly.018]
 XU Lingyu,WANG Guoxin,CAI Fei,et al.Fully coupled dynamic analysis of seismic response of liquefiable site[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2014,34(02):136.[doi:10.13197/j.eeev.2014.06.136.xuly.018]
[6]李兆焱,袁晓铭.2016年台湾高雄地震场地效应及砂土液化破坏概述[J].地震工程与工程振动,2016,36(03):001.[doi:10.13197/j.eeev.2016.03.1.lizy.001]
 LI Zhaoyan,YUAN Xiaoming.Seismic damage summarization of site effect and soil liquefaction in 2016 Kaohsiung earthquake[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2016,36(02):001.[doi:10.13197/j.eeev.2016.03.1.lizy.001]
[7]付海清,袁晓铭.液化对地表运动影响的现场试验研究[J].地震工程与工程振动,2016,36(05):099.[doi:10.13197/j.eeev.2016.05.99.fuhq.011]
 FU Haiqing,YUAN Xiaoming.Effect of soil liquefaction on ground motion using artificial vibration[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2016,36(02):099.[doi:10.13197/j.eeev.2016.05.99.fuhq.011]
[8]李兆焱,王梦龙,吴晓阳.唐山和巴楚地区液化土动力性能比较研究[J].地震工程与工程振动,2016,36(05):162.[doi:10.13197/j.eeev.2016.05.162.lizy.019]
 LI Zhaoyan,WANG Menglong,WU Xiaoyang.Relationship of dynamic performance of liquefied soil between Tangshan and Bachu regions[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2016,36(02):162.[doi:10.13197/j.eeev.2016.05.162.lizy.019]
[9]王瑞,庄海洋,陈国兴,等.地面微倾斜可液化场地中地铁地下车站结构的地震反应研究[J].地震工程与工程振动,2018,38(02):130.[doi:10.13197/j.eeev.2018.02.130.wangr.015]
 WANG Rui,ZHUANG Haiyang,CHEN Guoxing,et al.Seismic response of subway underground station buried in liquefiable soil foundation with the ground surface slight inclined[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2018,38(02):130.[doi:10.13197/j.eeev.2018.02.130.wangr.015]

备注/Memo

备注/Memo:
收稿日期:2018-2-10;改回日期:2018-6-11。
基金项目:国家自然科学基金项目(51778290,51778282,51508526);江苏省高校自然科学基金重大项目(16KJA560001)
作者简介:庄海洋(1978-),男,教授,博士,主要从事岩土地震工程的研究.E-mail:zhuang7802@163.com
更新日期/Last Update: 1900-01-01