[1]孙洪鑫,邓军军,王修勇,等.电磁惯质阻尼器在结构中位置优化以及减震分析[J].地震工程与工程振动,2019,39(02):069-78.[doi:10.13197/j.eeev.2019.02.69.sunhx.008]
 SUN Hongxin,DENG Junjun,WANG Xiuyong,et al.Position optimization and damping analysis of electromagnetic inerter dampers in structures[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2019,39(02):069-78.[doi:10.13197/j.eeev.2019.02.69.sunhx.008]
点击复制

电磁惯质阻尼器在结构中位置优化以及减震分析
分享到:

《地震工程与工程振动》[ISSN:/CN:]

卷:
39
期数:
2019年02
页码:
069-78
栏目:
论文
出版日期:
2019-04-30

文章信息/Info

Title:
Position optimization and damping analysis of electromagnetic inerter dampers in structures
作者:
孙洪鑫 邓军军 王修勇 禹见达
结构抗风与振动控制湖南省重点实验室(湖南科技大学), 湖南 湘潭 411201
Author(s):
SUN Hongxin DENG Junjun WANG Xiuyong YU Jianda
Hunan Provincial Key Laboratory of Structural Engineering for Wind Resistant and Vibrational Control(Hunan University of Science and Technology), Xiangtan 411201, China
关键词:
电磁惯质阻尼器位置优化布置权系数布置遗传算法电磁阻尼力惯质
Keywords:
electromagnetic inerter damperposition optimization arrangementweight coefficient arrangementgenetic algorithmelectromagnetic damping forceinerter
分类号:
TU311.3
DOI:
10.13197/j.eeev.2019.02.69.sunhx.008
摘要:
近年来,电磁惯质阻尼器(Electromagnetic Inerter Damper,EMID)的力学模型在土木工程减振研究领域已取得一定的研究成果,成为了一种十分有效的惯性质量减震装置。为了更好地发挥EMID减震效果,在以层间位移角为控制目标函数和相同阻尼器参数下,采用均匀布置与权系数布置、迭代法以及基于遗传算法的阻尼器位置优化布置四种布置方案对EMID在多自由度结构中安装位置进行优化布置,随后引入四个抗震性能评价指标对十自由度结构在四种位置布置方案下的减震效果进行分析比较。最后选出一种最优的阻尼器位置布置方案,进行十自由度结构控制参数变量仿真分析,分析了EMID在相同惯质不同电磁阻尼力和相同电磁阻尼力不同惯质的条件下的减震效果,为EMID的后续研究和其工程实际应用提供一定的理论基础。
Abstract:
In recent years, the mechanical model of Electromagnetic Inerter Damper (EMID) has achieved certain research results in the research field of civil engineering vibration damping, and has become a very effective inertial mass damping device.In order to better exert the EMID damping effect, under the interlayer displacement angle as the control objective function and the same damper parameters,uniform arrangement, weight coefficient arrangement, iterative method, and optimal arrangement of damper position based on genetic algorithm The scheme is used to optimize the installation position of EMID in a multi-DOF structure. Then, four seismic performance evaluation indexes are introduced to analyze and compare the damping effect of the ten-DOF structure under the four position arrangement schemes. Finally, an optimal arrangement scheme of dampers is selected to simulate the control variables of ten degrees of freedom structure. The damping of EMID under the different inerter of the same inerter with different electromagnetic damping force and same electromagnetic damping force is analyzed The results provide a theoretical basis for the follow-up study of EMID and its practical application.

参考文献/References:

[1] 关新春, 黄永虎, 李惠, 等. 自适应磁流变控制系统仿真计算研究[J]. 工程力学,2013,30(5):103-111. GUAN Xinchun, HUANG Yonghu, LI Hui, et al. Simulation of adaptive MR damper based control system[J]. Engineering Mechanics, 2013, 30(5):103-111.(in Chinese)
[2] 符川, 屈铁军, 孙世国. 主动调频液柱阻尼器基于遗传算法的LQR控制优化设计[J].振动与冲击, 2015,34(2):210-214. FU Chuan, QU Tiejun, SUN Shiguo. Optimal design of ATLCD with LQR control based on genetic algorithm[J].Journal of Vibration and Shock, 2015,34(2):210-214.(in Chinese)
[3] 凌和海, 薛素铎, 庄鹏. 减震结构中的粘弹性阻尼器参数优化[J]. 世界地震工程, 2005,21(3):126-130. LING Hehai, XUE Suduo, ZHUANG Peng. Parameter optimization of viscoelastic dampers in vibration control of structures[J]. World Earthquake Engineering, 2005, 21(3):126-130.(in Chinese)
[4] SUN Hongxin, LUO Yifan, WANG Xiuyong, et al. Seismic control of a SDOF structure through electromagnetic resonant shunt tuned mass-damper-inerter and the exact H2 optimal solutions[J]. Journal of Vibroengineering,2017, 19(3):2063-2079.
[5] 阎石, 宁欣, 王宁伟. 磁流变阻尼器在受控结构中的优化布置[J]. 地震工程与工程振动, 2004, 24(3):175-178. YAN Shi, NING Xin, WANG Ningwei. Optimal placement of MR dampers in structures[J]. Earthquake Engineering and Engineering Dynamics, 2004, 24(3):175-178.(in Chinese)
[6] Ashour S A. Elastic seismic response of building with supplemental damping[J]. Univ of Michigan Ann Arbor Mi, 1987.
[7] 贝伟明, 李宏男. 磁流变阻尼器在结构减震控制中的位置优化研究[J]. 工程抗震与加固改造, 2006,28(3):73-78. BEI Weiming, LI Hongnan. Study on the optimal placement of magnetorheological damper in structural control[J]. Earthquake Resistant Engineering and Retrofitting, 2006,28(3):73-78.(in Chinese)
[8] 丁阳, 葛金刚. 黏滞阻尼器在单层网壳结构中的优化布置[J]. 地震工程与工程振动, 2012, 32(4):166-173. DING Yang, GE Jingang. Optimal placement of viscous dampers in single-layer reticulated shell[J].Earthquake Engineering and Engineering Dynamics,2012, 32(4):166-173.(in Chinese)
[9] 闫维明, 杲晓龙, 谢志强, 等. 基于人工鱼群算法的位移型阻尼器位置和参数的优化方法[J]. 振动与冲击,2016,35(10):66-72. YANG Weiming, GENG Xiaolong, XIE Zhiqiang, et al. Optimization method for the placements and parameters of displacement-based dampers using artificial fish swarm algorithm[J].Journal of Vibration and Shock,2016,35(10):66-72.(in Chinese)
[10] Nakamura Y, Fukukita A, Tamura K, et al. Seismic response control using electromagnetic inerterl mass dampers[J]. Earthquake Engineering & Structural Dynamics, 2014, 43(4):507-527.
[11] 孙洪鑫, 罗一帆, 杨国松, 等. 电磁集能式调谐质量阻尼器的结构减震及能量收集分析[J]. 振动与冲击,2017,36(15):51-56. SUN Hongxin, LUO Yifan, YANG Guosong, et al. A RETMD with performances of structural aseismic control and energy harvesting for a single-DOF structure[J].Journal of Vibration and Shock,2017,36(15):51-56.(in Chinese)
[12] Smith M C. Synthesis of mechanical networks:the inerter[J]. Automatic Control, IEEE Transactions on, 2002, 47(10):1648-1662.
[13] 张琴, 楼文娟, 陈勇. 粘弹性阻尼器位置优化目标函数及其实现方法[J]. 工业建筑,2003, 33(6):10-13. ZHANG Qin, LOU Wenjuan, CHEN Yong. Objective functions and their implementing method of location optimum of viscoelastic dampers[J]. Industrial Construction, 2003, 33(6):10-13.(in Chinese)
[14] Zhang R, Soong T T. Seismic design of viscoelastic dampers for structural applications[J]. Journal of Structural Engineering, 1992, 118(5):1375-1392.
[15] 周云, 徐赵东, 邓雪松. 粘弹性阻尼结构中阻尼器的优化设置[J]. 世界地震工程,1998, 14(3):15-20. ZHOU Yun, XU Zhaodong, DENG Xuesong. Optimum installation of the damper in the viscoelastic structures[J]. World Earthquake Engineering, 1998, 14(3):15-20. (in Chinese)
[16] 欧进萍. 结构振动控制[M]. 北京:科学出版社, 2003. OU Jinping. Structural vibration control[M]. Beijing:Science Press, 2003.(in Chinese)
[17] Hoiiand J H. Adaptation in natural and artificiai systems[M] Ann Arbor, Michigan University of Michigan Press, 1975.
[18] 燕乐纬, 陈洋洋, 王龙, 等. 基于相对适应度遗传算法的高层结构粘滞阻尼器优化布置[J]. 振动与冲击,2014,33(6):195-200. YAN Lewei, CHEN Yangyang, WANG Long, et al. Optimum installation of viscous dampers in tall buildings based on relative fitness genetic algorithm[J]. Journal of Vibration and Shock, 2014,33(6):195-200.(in Chinese)
[19] 杨佑发, 李帅, 熊丽. 偏心结构黏滞阻尼器的空间位置优化[J]. 土木工程学报,2012(增刊2):99-102. YANG Youfa, LI Shuai, XIONG Li. Optimal distribution of fluid viscous dampers for eccentric structure[J]. China Civil Engineering Journal, 2012(S2):99-102.(in Chinese)
[20] 帅虹, 黄真, 周岱. 组合算法用于空间结构振动抑制的阻尼器优化布置[J]. 振动与冲击, 2008, 27(3):17-21. SHUAI Hong, HUANG Zhen, ZHOU Dai. Mixed algorithm for placement and quantity optimization of dampers In vibration reduction of spatial reticulated structures[J]. Journal of Vibration and Shock, 2008, 27(3):17-21.(in Chinese)
[21] 徐庆阳, 李爱群, 丁幼亮, 等. 基于改进遗传算法的大跨机库柱间消能支撑的位置优化研究[J]. 土木工程学报, 2013(6):35-43. XU Qingyang, LI Aiqun, DING Youliang, et al. Research on location optimization of energy dissipation braces between columns of long-span hangar based on improved genetic algorithm[J]. China Civil Engineering Journal, 2013(6):35-43.(in Chinese)
[22] 李宏男, 曲激婷. 基于遗传算法的位移型与速度型阻尼器位置优化比较研究[J].计算力学学报, 2010, 27(2):252-257. LI Hongnan, QU Jiting. Comparison of optimal placement of displacement-based and velocity-based dampers using genetic algorithm[J].Chinese Journal of Computational Mechanics,2010,27(2):252-257.(in Chinese)
[23] Ohtori Y, Chirstenson R E, Spencer J B F. Benchmark control problems for seismically excited nonlinear buildings[J]. Journal of Engineering Mechanics, 2015, 130(4):366-385.
[24] WEN Yongkui, CHEN Zhengqing, HUA Xugang, et al. Design and evaluation of tuned inerter-based dampers for the seismic control of MDOF structures[J]. Journal of Structural Engineering, 2016, 143(4):04016207.

备注/Memo

备注/Memo:
收稿日期:2018-5-21;改回日期:2018-11-19。
基金项目:国家自然科学基金项目(51778228);国家重点基础研究发展计划(973计划)(2015CB057702)
作者简介:孙洪鑫(1980-),男,教授,博士,主要从事结构振动控制与能量收集、结构抗风等研究.E-mail:cehxsun@hnust.edu.cn
更新日期/Last Update: 1900-01-01