[1]王猛,梁庆国,王丽丽,等.黄土隧道边仰坡动力响应的大型振动台模型试验研究[J].地震工程与工程振动,2019,39(02):141-150.[doi:10.13197/j.eeev.2019.02.141.wangm.015]
 WANG Meng,LIANG Qingguo,WANG Lili,et al.Large-scale shaking table model test study on dynamic response of loess tunnel side slope[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2019,39(02):141-150.[doi:10.13197/j.eeev.2019.02.141.wangm.015]
点击复制

黄土隧道边仰坡动力响应的大型振动台模型试验研究
分享到:

《地震工程与工程振动》[ISSN:/CN:]

卷:
39
期数:
2019年02
页码:
141-150
栏目:
论文
出版日期:
2019-04-30

文章信息/Info

Title:
Large-scale shaking table model test study on dynamic response of loess tunnel side slope
作者:
王猛123 梁庆国123 王丽丽123 边磊123
1. 土木工程国家级实验教学示范中心(兰州交通大学), 甘肃 兰州 730070;
2. 甘肃省道路桥梁与地下工程重点实验室, 甘肃 兰州 730070;
3. 兰州交通大学 土木工程学院, 甘肃 兰州 730070
Author(s):
WANG Meng123 LIANG Qingguo123 WANG Lili123 BIAN Lei123
1. Lanzhou Jiaotong University, National Demonstration Center for Experimental Civil Engineering Education, Lanzhou 730070, China;
2. Key Laboratory of Road & Bridge and Underground Engineering of Gansu Province, Lanzhou 730070, China;
3. School of Civil Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
关键词:
黄土隧道洞口仰坡动力响应地震动参数振动台模型试验
Keywords:
loess tunnelfront slopedynamic responseground motion parametersshaking table model test
分类号:
TU411;P315.9
DOI:
10.13197/j.eeev.2019.02.141.wangm.015
摘要:
设计并完成了1:80比例尺的高陡黄土边坡大型振动台模型试验。通过输入不同类型、幅值、频率的地震波,探讨地震作用下模型洞口仰坡动力响应规律,以及地震动参数对动力响应的影响。试验结果表明,不同地震波加载的过程中,坡面的PGA随着测点高程的增大而增大,在隧道仰拱和拱顶所处的位置,PGA有突然减小的过程。其中仰拱周围边坡坡面的PGA减小更大,说明隧道的存在对坡面加速度的放大作用具有一定的抑制作用,其中仰拱位置比拱顶位置抑制作用更强。台面峰值加速度越大,仰拱对加速度的抑制作用更加明显,坡顶面的PGA最大,因此坡面越高,加速度的放大效应越明显,并没有出现加速度放大系数饱和的这种状态。试验结果有助于揭示黄土隧道仰坡在地震作用下的失稳机制,为工程的抗震设计提供有益的参考。
Abstract:
The model test has been designed and carried out for a high and steep loess slope with a scale of 1:80. By inputting the seismic wave of different types, amplitudes and frequencies, the dynamic response of the inverted slope under the earthquake action and the influences of ground motion parameters on the dynamic response are discussed. The test results show that in the process of loading different seismic waves, the slope surface PGA increases with the increasing slope height. At the inverted arch and vaults of tunnels, PGA suddenly decreases. And the PGA at the inverted arch on the surface of the slope of decreasing is larger than that of other positions, which indicates that the existence of the tunnel on the slope has a stronger inhibitory effect on the acceleration amplification effect at the inverted arch than the arch. The greater the input peak acceleration is, the stronger inhibitory effect of the inverted arch on the acceleration is. The PGA on the top of slope surface is the largest. So the higher the slope is, the more obvious acceleration amplification effect would be. However, the saturation of the acceleration amplification coefficient didn’t appear. The experimental results can help to reveal the instability mechanism of the slope of the loess tunnel under the earthquake action and provide a useful reference for the seismic design of the related project.

参考文献/References:

[1] 薄景山, 徐国栋, 景立平.土边坡地震反应及其动力稳定性分析[J].地震工程与工程振动, 2001, 21(2):116-120. BO Jingshan, XU Guodong, JING Liping. Analysis of seismic response and dynamic stability of soil slopes[J]. Earthquake Engineering and Engineering Dynamics, 2001, 21(2):116-120.(in Chinese)
[2] George D B, Achilleas G P. Numerical evaluation of slope topography effects on seismic ground motion[J]. Soil Dynamics and Earthquake Engineering, 2005, 25(7/8/9/10):547-558.
[3] 许红涛, 卢文波, 周创兵, 等.基于时程分析的岩质高边坡开挖爆破动力稳定性计算方法[J].岩石力学与工程学报, 2006, 25(11):2213-2219. XU Hongtao, LU Wenbo, ZHOU Chuangbing, et al. Calculation method for dynamic stability of rock high slope excavation based on time history analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(11):2213-2219.(in Chinese)
[4] 祁生文.单面边坡的两种动力反应形式及其临界高度[J].地球物理学报, 2006, 49(2):518-523. QI Shengwen. Two dynamic response forms and critical height of single-side slope[J].Chinese Journal of Geophysics, 2006, 49(2):518-523.(in Chinese)
[5] 周永江, 王开云, 符文熹, 等.高地震烈度区堆积体边坡动力响应时程特征分析[J].山地学报, 2007, 25(1):93-98. ZHOU Yongjiang, WANG Kaiyun, FU Wenxi, et al. Analysis of time-course characteristics of dynamic response of piled slope in high seismic intensity region[J].Journal of Mountain Research, 2007, 25(1):93-98.(in Chinese)
[6] 付毳, 黄福云, 陈宝春, 等.沿海软土地区PHC管桩-土-结构模型振动台试验[J].中国公路学报, 2017, 30(10):81-92. FU Cui, HUANG Fuyun, CHEN Baochun, et al. Shaking table test of PHC pipe pile-soil-structure model in coastal soft soil area[J].China Journal of Highway and Transport, 2017, 30(10):81-92.(in Chinese)
[7] 陈苏, 陈国兴, 戚承志, 等.可液化场地上三拱立柱式地铁地下车站结构地震反应特性振动台试验研究[J].岩土力学, 2015, 36(7):1899-1914. CHEN Su, CHEN Guoxing, QI Chengzhi, et al. Shaking table test study on seismic response characteristics of three-arch column subway underground station structure on liquefiable site[J]. Rock and Soil Mechanics, 2015, 36(7):1899-1914.(in Chinese)
[8] 陈国兴, 庄海洋, 杜修力, 等.土-地铁隧道动力相互作用的大型振动台试验——试验结果分析[J].地震工程与工程振动, 2007, 37(1):164-170. CHEN Guoxing, ZHUANG Haiyang, DU Xiuli, et al, CHENG Shaoge. A Large Shaking Table Test for Dynamic Interaction of Soil-Metro Tunnels——Analysis of Test Results[J].Earthquake Engineering and Engineering Dynamics, 2007, 37(1):164-170.(in Chinese)
[9] 陈国兴, 庄海洋, 杜修力, 等.土-地铁车站结构动力相互作用大型振动台模型试验研究[J].地震工程与工程振动, 2007, 27(2):171-176. CHEN Guoxing, ZHUANG Haiyang, DU Xiuli, et al. Experimental study on large-scale shaking table model for dynamic interaction of soil-metro station structure[J].Earthquake Engineering and Engineering Dynamics, 2007, 27(2):171-176.(in Chinese)
[10] 王志华, 刘汉龙, 陈国兴, 等.土-结构相互作用效应对结构基底地震动影响的试验研究[J].地震工程与工程振动, 2005,25(3):132-137. WANG Zhihua, LIU Hanlong, CHEN Guoxing, et al. Experimental study on the effect of soil-structure interaction on the ground motion of structural foundation[J].Earthquake Engineering and Engineering Dynamics, 2005, 25(3):132-137.(in Chinese)
[11] 陈红娟, 闫维明, 陈适才, 等.小比例尺地下结构振动台试验模型土的设计与试验研究[J].地震工程与工程振动, 2015, 35(3):59-66. CHEN Hongjuan, YAN Weiming, CHEN Shicai, et al. Design and experimental study of shaking table test model soil for small scale underground structures[J].Earthquake Engineering and Engineering Dynamics, 2015, 35(3):59-66.(in Chinese)
[12] 陈红娟, 李小军, 闫维明, 等.锯末混合土场地模型振动台试验研究[J].岩土工程学报, 2017, 39(11):2068-2077. CHEN Hongjuan, LI Xiaojun, YAN Weiming, et al. Study on shaking table test of sawdust mixed soil site model[J].Chinese Journal of Geotechnical Engineering, 2017, 39(11):2068-2077.(in Chinese)
[13] 李培振, 刘艳梅, 崔圣龙, 吕西林.可液化土-高层结构振动台试验的土性参数识别[J].岩石力学与工程学报, 2011, 30(S1):3234-3244. LI Peizhen, LIU Yanmei, CUI Shenglong, LV Xilin. Soil parameter identification of liquefiable soil-high-rise structure shaking table test[J].Chinese Journal of Rock Mechanics and Engineering, 2011, 30(S1):3234-3244.(in Chinese)
[14] 吕西林, 陈跃庆, 陈波, 等.结构-地基动力相互作用体系振动台模型试验研究[J].地震工程与工程振动, 2000, 20(4):20-29. LV Xilin, CHEN Yueqing, CHEN Bo, et al. Study on shaking table model test of structure-foundation dynamic interaction system[J].Earthquake Engineering and Engineering Dynamics, 2000, 20(4):20-29.(in Chinese)
[15] 陶连金, 李书龙, 候森, 等.山岭隧道洞口段地震响应振动台模型试验研究[J].世界地震工程, 2016, 32(4):8~16. TAO Lianjin, LI Shulong, HOU Sen, et al. Shaking table model test of seismic response of tunnel section of mountain tunnel[J].World Earthquake Engineering, 2016, 32(4):8-16.(in Chinese)
[16] 张钦鹏. 考虑边坡进洞高程的大断面黄土隧道洞口段动力响应特征研究[D].兰州:兰州交通大学, 2017. ZHANG Qinpeng. Study on dynamic response characteristics of large section loess tunnel considering the elevation of slope into tunnel[D]. Lanzhou:Lanzhou Jiaotong University, 2017.(in Chinese)
[17] 李林, 何川, 耿萍, 等. 浅埋偏压洞口段隧道地震响应振动台模型试验研究[J]. 岩石力学与工程学报, 2011, 30(12):2540-2548. LI Lin, HE Chuan, PEI Ping, et al. Shaking table model test of seismic response of tunnels with shallow buried tunnels[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(12):2540-2548.(in Chinese)
[18] GB50011-2010建筑抗震设计规范[S].北京:中国建筑工业出版社, 2010. GB50011-2010 Code for Seismic Design of Buildings[S]. Beijing:China Building Industry Press, 2010.(in Chinese)
[19] GB18306-2015中国地震动参数区划图[S].北京:中国标准出版社, 2016. GB18306-2015 China Earthquake Parameter Zoning Map[S]. Beijing:China Standard Press, 2016.(in Chinese)
[20] GB50111-2006铁路工程抗震设计规范[S].北京:中国计划出版社, 2010. GB50111-2006 Code for Seismic Design of Railway Engineering[S]. Beijing:China Planning Press, 2010.(in Chinese)
[21] 丁宝荣, 杜轲, 孙景江, 等.考虑不确定性的地震烈度与地震动参数关系研究[J].地震工程与工程振动, 2018, 38(2):106-114. DING Baorong, DU Wei, SUN Jingjiang, et al. Research on the relationship between seismic intensity and ground motion parameters considering uncertainty[J]. Earthquake Engineering and Engineering Dynamics, 2018, 38(2):106-114.(in Chinese)
[22] 王丽丽, 梁庆国, 孙文, 等.入洞高程对黄土隧道洞口段动力响应特征的影响分析[J].地震工程学报, 2017, 39(5):853-858, 869. WANG Lili, LIANG Qingguo, SUN Wen, et al. Analysis of the influence of tunneling elevation on the dynamic response characteristics of the tunnel section of loess tunnel[J].Journal of Earthquake Engineering, 2017, 39(5):853-858, 869.(in Chinese)

备注/Memo

备注/Memo:
收稿日期:2018-5-17;改回日期:2018-8-20。
基金项目:国家自然科学基金项目(41562013,41262010);兰州交通大学“百名青年优秀人才培养计划”
作者简介:王猛(1992-)男,硕士研究生,主要从事岩土及隧道工程方面的研究.E-mail:cncugwm@163.com
通讯作者:梁庆国(1976-)男,教授,博士,主要从事岩土工程方面的教学与研究.E-mail:lqg_39@163.com
更新日期/Last Update: 1900-01-01