[1]李小珍,辛莉峰,刘鸣,等.近场滑冲型地震对某五跨两联桥的影响[J].地震工程与工程振动,2019,39(02):169-176.[doi:10.13197/j.eeev.2019.02.169.lixz.018]
 LI Xiaozhen,XIN Lifeng,LIU Ming,et al.Effect of near-fault fling-step motions on a five-span two-frame bridge[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2019,39(02):169-176.[doi:10.13197/j.eeev.2019.02.169.lixz.018]
点击复制

近场滑冲型地震对某五跨两联桥的影响
分享到:

《地震工程与工程振动》[ISSN:/CN:]

卷:
39
期数:
2019年02
页码:
169-176
栏目:
论文
出版日期:
2019-04-30

文章信息/Info

Title:
Effect of near-fault fling-step motions on a five-span two-frame bridge
作者:
李小珍1 辛莉峰1 刘鸣1 戴胜勇2 肖林1
1. 西南交通大学 桥梁工程系, 四川 成都 610031;
2. 中铁二院工程集团有限责任公司, 四川 成都 610031
Author(s):
LI Xiaozhen1 XIN Lifeng1 LIU Ming1 DAI Shengyong2 XIAO Lin1
1. Department of Bridge Engineering, Southwest Jiaotong University, Chengdu 610031, China;
2. China Railway Eryuan Engineering Group Limited Liability Company, Chengdu 610031, China
关键词:
滑冲型地震动脉冲模型高频分量碰撞效应地震响应
Keywords:
fling-step motionspulse modelhigh-frequency componentpounding effectseismic response
分类号:
P315.9
DOI:
10.13197/j.eeev.2019.02.169.lixz.018
摘要:
滑冲型地震动可能会引起结构更大的地震响应,为近场地震造成灾害的主要来源之一。为了探索滑冲型地震作用下桥梁的地震响应特性,本文基于OpenSEES软件建立了某五跨两联桥的非线性分析模型,且考虑碰撞效应,以等效脉冲模型、收集并处理的地震动记录等作为激励源,进行了时程分析、理想单边脉冲的参数分析、实测地震动与理想单边脉冲的对比分析等。结果表明:基线修正对于滑冲型地震动有着一定的必要性;碰撞效应改变了滑冲地震下桥梁结构的响应特征;脉冲分量及剩余分量在结构分析中均具有不可忽视的作用。
Abstract:
Fling-step motions, which might impose unexpected seismic demands on structures, are one of the main consequences of near-fault earthquake. In order to investigate the seismic behavior of bridge structures subjected to fling-step motions, a non-linear analysis model of a five-span two-frame bridge is established through OpenSEES software, in which the pounding effect is also considered. The equivalent pulse model, and broadband seismic records collected and treated are utilized as the excitation sources. Some significant studies from aspects of time-history analysis, parametric analysis for idealized one-sided pulses, and comparison analysis between idealized pulse and recorded ground motions are conducted. Finding from these studies reveals that there is a certain necessity of baseline correction for fling-step motions; the pounding effect influences the response characteristics of bridge structures; both the impulse and residual components play an important role in structural analysis.

参考文献/References:

[1] 刘启方,袁一凡,金星,等. 近断层地震动的基本特征[J]. 地震工程与工程振动, 2006, 26(1):1-10. LIU Qifang, YUAN Yifan, JIN Xing, et al. Basic characteristics of near-fault ground motion[J]. Earthquake Engineering and Engineering Dynamics, 2006, 26(1):1-10. (in Chinese)
[2] Alavi B, Krawinkler H. Behavior of moment-resisting frame structures subjected to near-fault ground motions[J]. Earthquake Engineering and Structural Dynamics, 2004, 33(6):687-706.
[3] Mavroeidis G P, Papageorgiou A S. A mathematical representation of near-fault ground motions[J]. Bulletin of the Seismological Society of America, 2003, 93(3):1099-1131.
[4] Menun C, Fu Q. An analytical model for near-fault ground motions and the response of SDOF systems[C].//Earthquake Engineering Research Institute eds. Seventh US National Conference on Earthquake Engineering. Boston, Massachusetts:Mira Digital Publishing, 2002(00011).
[5] He W L, Agrawal A K. Analytical model of ground motion pulses for the design and assessment of seismic protective systems[J]. Journal of Structural Engineering, 2008, 134(7):1177-1188.
[6] 孟宪锋, 朱晞. 近场地震作用下高速铁路简支梁桥的碰撞行为[J]. 北京交通大学学报, 2006, 30(4):73-76. MENG Xianfeng, ZHU Xi. Pounding behavior of high-speed railway simple supported bridges under the near-fault earthquakes[J]. Journal of Beijing Jiaotong University, 2006, 30(4):73-76. (in Chinese)
[7] 王炎, 谢旭, 申永刚. 近场地震作用下铁路减震桥梁地震响应研究[J]. 铁道学报, 2012, 34(12):102-109. WANG Yan, XIE Xu, SHEN Yonggang. Seismic response of isolated railway bridge subjected to near-fault ground motion[J]. Journal of the China Railway Society, 2012, 34(12):102-109. (in Chinese)
[8] Dolati A, Taghikhany T, Khanmohammadi M, et al. Scenario-based seismic performance assessment of regular and irregular highway bridges under near-fault ground motions[J]. Earthquakes and Structures, 2015, 8(3):573-589.
[9] Li S, Zhang F, Wang J, et al. Seismic responses of super-span cable-stayed bridges induced by ground motions in different sites relative to fault rupture considering soil-structure interaction[J]. Soil Dynamics and Earthquake Engineering, 2017, 101:295-310.
[10] Tahghighi H. Earthquake fault-induced surface rupture-A hybrid strong ground motion simulation technique and discussion for structural design[J]. Earthquake engineering & structural dynamics, 2011, 40(14):1591-1608.
[11] Li S, Zhang F, Wang J, et al. Effects of near-fault motions and artificial pulse-type ground motions on super-span cable-stayed bridge systems[J]. Journal of Bridge Engineering, 2016, 22(3):04016128.
[12] Luco N, Cornell C A. Structure-specific scalar intensity measures for near-source and ordinary earthquake ground motions[J]. Earthquake Spectra, 2007, 23(2):357-392.
[13] Baker J W, Cornell C A. Vector-valued intensity measures for pulse-like near-fault ground motions[J]. Engineering structures, 2008, 30(4):1048-1057.
[14] Burks L S, Baker J W. A predictive model for fling-step in near-fault ground motions based on recordings and simulations[J]. Soil Dynamics and Earthquake Engineering, 2016, 80:119-126.
[15] Yadav K K, Gupta V K. Near-fault fling-step ground motions:Characteristics and simulation[J]. Soil Dynamics and Earthquake Engineering, 2017, 101:90-104.
[16] Iwan W D, Moser M A, Peng C Y. Some observations on strong-motion earthquake measurement using a digital accelerograph[J]. Bulletin of the Seismological Society of America, 1985; 75(5):1225-1246.
[17] Wu Y M, Wu C F. Approximate recovery of coseismic deformation from Taiwan strong-motion records[J]. Journal of Seismology, 2007, 11(2):159-170.
[18] Mander J B, Priestley M J N, Park R. Theoretical stress-strain model for confined concrete[J]. Journal of Structural Engineering, 1988, 114(8):1804-1826.
[19] Filippou F C, Popov E P, Bertero V V. Effects of bond deterioration on hysteretic behavior of reinforced concrete joints[R]. Report no. EERC 83-19. Berkeley:Earthquake Engineering Research Center, Univ. of California, 1983.
[20] Shrestha B, Hao H, Bi K. Effectiveness of using rubber bumper and restrainer on mitigating pounding and unseating damage of bridge structures subjected to spatially varying ground motions[J]. Engineering Structures, 2014, 79:195-210.
[21] Raheem S E A. Pounding mitigation and unseating prevention at expansion joints of isolated multi-span bridges[J]. Engineering Structures, 2009, 31(10):2345-2356.
[22] Zhao L, Bi K, Hao H, et al. Numerical studies on the seismic responses of bridge structures with precast segmental columns[J]. Engineering Structures, 2017, 151:568-583.
[23] Hisada Y, Bielak J. A theoretical method for computing near-fault ground motions in layered half-spaces considering static offset due to surface faulting, with a physical interpretation of fling step and rupture directivity[J]. Bulletin of the Seismological Society of America, 2003, 93(3):1154-1168.

备注/Memo

备注/Memo:
收稿日期:2018-7-30;改回日期:2018-12-24。
基金项目:中国铁路总公司科技计划项目重大课题(2015G002-B);国家重点研发计划(2017YFC1500803)
作者简介:李小珍(1970-),男,教授,博士,主要从事桥梁动力学研究.E-mail:xzhli@swjtu.edu.cn
通讯作者:辛莉峰(1992-),男,博士研究生,主要从事桥梁动力学研究.E-mail:sxxlf2010@163.com
更新日期/Last Update: 1900-01-01