[1]徐略勤,李建中.高墩刚构桥考虑材料劣化的时变抗震性能分析[J].地震工程与工程振动,2019,39(02):194-202.[doi:10.13197/j.eeev.2019.02.194.xulq.021]
 XU Lueqin,LI Jianzhong.Time-dependent seismic performance analysis of rigid frame bridge with high piers considering the effect of material deterioration[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2019,39(02):194-202.[doi:10.13197/j.eeev.2019.02.194.xulq.021]
点击复制

高墩刚构桥考虑材料劣化的时变抗震性能分析
分享到:

《地震工程与工程振动》[ISSN:/CN:]

卷:
39
期数:
2019年02
页码:
194-202
栏目:
论文
出版日期:
2019-04-30

文章信息/Info

Title:
Time-dependent seismic performance analysis of rigid frame bridge with high piers considering the effect of material deterioration
作者:
徐略勤1 李建中2
1. 重庆交通大学 土木工程学院, 重庆 400074;
2. 土木工程防灾国家重点实验室(同济大学), 上海 200092
Author(s):
XU Lueqin1 LI Jianzhong2
1. School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China;
2. State Key Laboratory for Disaster Reduction in Civil Engineering(Tongji University), Shanghai 200092, China
关键词:
高墩刚构桥材料劣化抗震性能推倒分析增量动力分析
Keywords:
rigid frame bridge with high piersmaterial deteriorationseismic performancepushover analysisincremental dynamic analysis
分类号:
U442.5+5
DOI:
10.13197/j.eeev.2019.02.194.xulq.021
摘要:
为了研究材料性能劣化对桥梁抗震性能的影响,以某高墩刚构桥及其服役环境为背景,分别计算得到了钢筋和混凝土的材料劣化时变规律,采用OpenSEES建立了不同服役年限的桥梁分析模型,基于推倒分析和增量动力分析研究了材料性能劣化对桥梁时变抗震性能的影响规律。研究表明:随着服役年限的增长,体系推倒曲线的等效屈服强度和屈服变形因劣化而不断下降,最大降幅均超过15%,而构件的等效屈服弯矩和等效屈服曲率最大分别下降了12.47%和19.88%;材料劣化在体系和构件两个层面上降低了桥梁的屈服性能,而对桥梁的初始刚度和动力特性的影响很小;当桥梁处于弹性状态时,材料劣化的影响可以忽略,当桥梁进入塑性状态后,材料劣化的影响随着桥梁塑性发展程度的加深而不断增大,墩底曲率延性系数最大增幅超过40%。因此,材料劣化对高烈度地区和采用延性设计方法的桥梁抗震而言是不可忽视的影响因素。
Abstract:
To investigate the influence of material deterioration on the seismic performance of bridges, the time-dependent deterioration models were proposed respectively for the steel and concrete materials according to a rigid frame bridge with high piers serving in a particular environment. The OpenSEES software was used to establish analytical models for the bridge corresponding to different service years. The pushover analysis and incremental dynamic analysis methods were applied to reveal the effect of material deterioration on the seismic response of the bridge. The studies show that with a longer service life the equivalent yield strengths and yield deformations of pushover curves are decreased by more than 15%. The equivalent yield moments of the bridge elements decline due to material deterioration by a maximum of 12.74% while the equivalent yield curvatures decline by a maximum of 19.88%. The effect of material deterioration is mainly found on decreasing the yield properties of the bridge in both levels of structure system and structural elements. And the initial stiffnesses and the dynamic characteristics of the bridge are barely impacted by the material deterioration. When the bridge is in its elastic range, the effect of material deterioration can be ignored. But when the bridge deforms into its plastic range, the effect of material deterioration will be amplified by a larger degree of plasticity development, for example the curvature ductility factors of the pier columns are increased by more than 40%. Therefore, the effect of material deterioration cannot be ignored for the seismic performance evaluation of bridges located in high-seismicity zones or designed based on the ductility philosophy.

参考文献/References:

[1] EERI. The Hyogo-ken Nanbu earthquake reconnaissance report[R]. Oakland:Earthquake Engineering and Research Institute, 1995.
[2] 陈乐生, 庄卫林, 赵河清, 等. 汶川地震公路震害调查:桥梁[M]. 北京:人们交通出版社, 2012. CHEN Lesheng, ZHUANG Weilin, ZHAO Heqing, et al. Report on highways’ damage in the Wenchuan Earthquake:bridge[M]. Beijing:China Communications Press, 2012.(in Chinese)
[3] 牛荻涛. 混凝土结构耐久性与寿命预测[M]. 北京:科学出版社, 2003. NIU Ditao. Durability and life forecast of reinforced concrete structure[M]. Beijing:Science Press, 2003. (in Chinese)
[4] 龙晓鸿, 左皓, 樊剑, 等. 考虑钢筋腐蚀影响的隔震连续梁桥地震易损性分析[J]. 地震工程与工程振动, 2014, 34(S):829-835. LONG Xiaohong, ZUO Hao, FAN Jian, et al. Seismic vulnerability analysis of isolated continuous girder bridge considering steel corrosion[J]. Earthquake Engineering and Engineering Dynamics, 2014, 34(S):829-835. (in Chinese)
[5] 李立峰, 吴文朋, 胡思聪. 考虑氯离子侵蚀的高墩桥梁时变地震易损性分析[J]. 工程力学, 2016, 33(1):163-170. LI Lifeng, WU Wenpeng, HU Sicong. Time-dependent seismic fragility analysis of high pier bridge based on chloride ion induced corrosion[J]. Engineering Mechanics, 2016, 33(1):163-170. (in Chinese)
[6] Akiyama M, Frangopol D M. Long-term seismic performance of RC structures in an aggressive environment:emphasis on bridge piers[J]. Structure and Infrastructure Engineering, 2014, 10(7):865-879.
[7] Ghosh J, Padgett J E. Aging considerations in the development of time-dependent seismic fragility curves[J]. Structural Engineering, 2011, 136(12):1497-1512.
[8] Mazzoni S, Mckenna F, Scott M H, et al. Open system for earthquake engineering simulation:OpenSEES command language manual[M]. California:University of California, Berkeley, 2007.
[9] 徐略勤, 乔万芝, 何路平, 等. 地震下高墩刚构桥桥台-背土相互作用分析方法对比研究[J]. 土木建筑与环境工程, 2016, 38(6):105-112. XU Lueqin, QIAO Wanzhi, HE Luping, et al. Comparison of analytical methods for the abutment-backfill interaction of a rigid frame bridge with high piers under seismic loading[J]. Journal of Civil, Architectural & Environmental Engineering, 2016, 38(6):105-112.(in Chinese)
[10] Mander J B, Priestley M J N, Papk R. Theoretical stress-strain model for confined concrete[J]. Journal of Structural Engineering, 1988, 114(8):1804-1826.
[11] Paraskeva T S, Kappos A J, Sextos A G. Extension of modal pushover analysis to seismic assessment of bridges[J]. Earthquake Engineering and Structural Dynamics, 2006, 35(10):1269-1293.
[12] JTG/TB02-01-2008公路桥梁抗震设计细则[S]. 北京:人民交通出版社, 2008. JTG/TB02-01-2008 Guidelines for Seismic Design of Highway Bridges[S]. Beijing:China Communication Press, 2008. (in Chinese)
[13] 冯鹏, 强翰霖, 叶列平. 材料、构件、结构的"屈服点"定义与讨论[J]. 工程力学, 2017, 34(3):36-46. FENG Peng, QIANG Hanlin, YE Lieping. Discussion and definition on yield points of materials, members and structures[J]. Engineering Mechanics, 2017, 34(3):36-46.(in Chinese)
[14] 梁岩, 李杰, 罗小勇, 等. 锈蚀钢筋混凝土构件抗震动力性能研究[J]. 振动工程学报, 2016, 29(1):140-147. LIANG Yan, LI Jie, LUO Xiaoyong, et al. Study on anti-seismic dynamic property of corroded reinforced concrete member[J]. Journal of Vibration Engineering, 2016, 29(1):140-147.(in Chinese)
[15] 郑晓培, 卓卫东, 吴子强, 等. 锈蚀钢筋混凝土墩柱的双向拟静力试验[J]. 福州大学学报:自然科学版, 2016, 44(4):516-523. ZHENG Xiaopei, ZHUO Weidong, WU Ziqiang, et al. Quasi-static test of corroded RC bridge column under biaxial loading[J]. Journal of Fuzhou University:Natural Science Edition, 2016, 44(4):516-523.(in Chinese)

相似文献/References:

[1]雷虎军,李小珍,刘德军.地震作用下高墩刚构桥行车安全性分析[J].地震工程与工程振动,2014,34(05):087.[doi:10.13197/j.eeev.2014.05.87.leihj.012]
 LEI Hujun,LI Xiaozhen,LIU Dejun.Train running safety analysis of high-pier rigid frame bridge under earthquake action[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2014,34(02):087.[doi:10.13197/j.eeev.2014.05.87.leihj.012]

备注/Memo

备注/Memo:
收稿日期:2018-8-10;改回日期:2018-12-12。
基金项目:国家重点研发计划重点专项子课题(2016YFC0802206-3);重庆市基础与前沿研究计划项目(cstc2015jcyjA30014)
作者简介:徐略勤(1983-),男,副教授,博士,主要从事桥梁抗震研究.E-mail:xulueqin@163.com
更新日期/Last Update: 1900-01-01