[1]董林,夏坤,李少华,等.剪切波速液化判别方法对粉砂及粉土适用性研究[J].地震工程与工程振动,2019,39(02):225-232.[doi:10.13197/j.eeev.2019.02.225.dongl.024]
 DONG Lin,XIA Kun,LI Shaohua,et al.Study on applicability of VS-based liquefaction potential assessment methods for silty sands and silts[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2019,39(02):225-232.[doi:10.13197/j.eeev.2019.02.225.dongl.024]
点击复制

剪切波速液化判别方法对粉砂及粉土适用性研究
分享到:

《地震工程与工程振动》[ISSN:/CN:]

卷:
39
期数:
2019年02
页码:
225-232
栏目:
论文
出版日期:
2019-04-30

文章信息/Info

Title:
Study on applicability of VS-based liquefaction potential assessment methods for silty sands and silts
作者:
董林12 夏坤12 李少华12 杨博12
1. 中国地震局兰州地震研究所 黄土地震工程重点实验室, 甘肃 兰州 730000;
2. 甘肃省岩土防灾工程技术研究中心, 甘肃 兰州 730000
Author(s):
DONG Lin12 XIA Kun12 LI Shaohua12 YANG Bo12
1. Key Laboratory of Loess Earthquake Engineering, Lanzhou Institute of Seismology, CEA, Lanzhou 730000, China;
2. Geotechnical Disaster Prevention Engineering Technology Research Center of Gansu Province, Lanzhou 730000, China
关键词:
含细粒土体液化判别剪切波速试验标准贯入试验适用性
Keywords:
fines-containing soilsliquefaction discriminationshear wave velocitySPTapplicability
分类号:
P315.9;TU43
DOI:
10.13197/j.eeev.2019.02.225.dongl.024
摘要:
含细粒土体相对于纯净砂在自然界中分布更为广泛,其地震液化灾害在上世纪70年代之后逐渐成为研究热点,然而关于其液化判别,一直以来都只是在砂土方法的基础上,稍作调整。本文对比了美国NCEER推荐的基于标贯试验的Seed方法和基于剪切波速试验的Andrus和Stokoe方法,以历史地震数据检验方法,结果显示剪切波速方法对含细粒土体过于保守,并且细粒含量越高,对非液化点越不可靠。通过建立两个方法3组细粒含量下液化临界曲线上的剪切波速与标贯击数相关关系,得出临界剪切波速随细粒含量增加而减小的趋势没有临界标贯击数那么迅速。剪切波速试验为小应变无损测试,对含细粒土土颗粒间胶结力较为敏感,而液化状态为大应变破坏阶段,土体胶结力基本丧失,因此对胶结较强的含细粒土体,剪切波速指标与液化难以建立唯一联系。另外,中国规范剪切波速液化判别方法存在误导,由于判别式已经用黏粒含量修正,因此,Vs0经验系数应统一只取砂土数值。
Abstract:
Silty sands and silts are more widely distributed in nature than clean sands, and its seismic liquefaction disaster has gradually been a focus of soil liquefaction engineering since 1970s. However, about its liquefaction discrimination, it has always been a little modification based on clean sand methods. In this paper, NCEER recommended SPT-based Seed methods and Vs-based Andrus and Stokoe methods are tested and compared by using earthquake case histories, results show that Vs-based methods are too conservative for fines-containing soils, and the higher fines percent, the more unreliable for non-liquefaction cases. By establishing the relationship between critical Vs1 and critical (N1)60 for 3 fines percent critical curve of two methods, it is concluded that the trend of decrease of critical Vs1 with increase of fines percent is not as fast as that trend of critical (N1)60. Shear wave velocity tests are made at small strains, and sensitive to interparticle bonding of fines-containing soils. Whereas, liquefaction are high strain and destructive phenomena, these interparticle bonding of fines-containing soils has been destroyed. Accordingly, it is difficult to establish an unique correlation between liquefaction resistance and shear wave velocity for fines-containing soils. In addition, Vs-based Chinese code method is misleading, because of the discriminant has been modified by the clay content, so empirical coefficients Vs0 should be taken only the value of sand.

参考文献/References:

[1] 钟龙辉. 轻亚粘土地震液化判定方法的分析[J]. 岩土工程学报, 1980, 2(3):113-122. ZHONG Longhui. Analysis for evaluating liquefaction of low plasticity clays(CL) during earthquake[J]. Chinese Journal of Geotechnical Engineering, 1980, 2(3):113-122. (in Chinese)
[2] 石兆吉, 郁寿松, 王余庆,等. 饱和轻亚粘土地基液化可能性判别[J]. 地震工程与工程振动,1984, 4(3):71-82. SHI Zhaoji, YU Shousong, WANG Yuqing, et al. Prediction of liquefaction potential of saturated clayey silt[J]. Earthquake Engineering and Engineering Dynamics, 1984, 4(3):71-82. (in Chinese)
[3] Seed H B, Idriss I M, Arango I. Evaluation of liquefaction potential using field performance data[J]. Journal of Geotechnical Engineering, 1983, 109(3):458-482.
[4] Seed H B, Idriss I M. Simplified procedure for evaluating soil liquefaction potential[J]. Journal of Geotechnical Engineering, 1971, 97(9):1249-1273.
[5] Youd T L, Idriss I M. Liquefaction resistance of soils:summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(4):297-313.
[6] Seed H B, Tokimatsu K, Harder L F, et al. The influence of SPT procedures in soil liquefaction resistance evaluations[J]. Journal of Geotechnical Engineering, 1985, 111(12):1425-1445.
[7] Andrus R D, Stokoe K H. Liquefaction resistance of soils from shear-wave velocity[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(11):1015-1025.
[8] Stokoe K H, Roesset J M, Bierschwale J G, et al. Liquefaction potential of sands from shear-wave velocity[C]//Proceedings of the 9th World Conference on Earthquake Engineering, 1988(Ⅲ):213-218.
[9] Hwang J H, Yang C W. Verification of critical cyclic strength curve by Taiwan Chi-Chi earthquake data[J]. Soil Dynamics and Earthquake Engineering, 2001, 21:237-257.
[10] 董林, 王兰民, 袁晓铭. 细粒土液化判别特征指标研究[J]. 岩土工程学报, 2015, 37(3):504-511. DONG Lin, WANG Lanmin, YUAN Xiaoming. Liquefaction evaluation indices for fine-grained soils[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3):504-511. (in Chinese)
[11] 汪闻韶. 剪切波速在评估地基饱和砂层地震液化可能性中的应用[J].岩土工程学报, 2001, 23(6):659-662. WANG Wenshao. Utilization of shear wave velocity in assessment of liquefaction potential of saturated sand under level ground during earthquakes[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(6):659-662. (in Chinese)
[12] GB50021-2001岩土工程勘察规范[S]. 北京:中国建筑工业出版社, 2009. GB50021-2001 Code for Investigation of Geotechnical Engineering[S]. Beijing:China Architecture and Building Press, 2009. (in Chinese)
[13] 石兆吉. 判别水平土层液化势的剪切波速法[J].水文地质工程地质, 1986, 5(4):9-13. SHI Zhaoji. Shear wave velocity based method for assessment of horizontal soil layer liquefaction potential[J]. Hydrogeology and Engineering Geology, 1986, 5(4):9-13. (in Chinese)
[14] 石兆吉, 郁寿松, 丰万玲. 土壤液化势的剪切波速判别法[J].岩土工程学报, 1993, 15(1):74-80. SHI Zhaoji, YU Shousong, FENG Wanling. Evaluation of soil liquefaction potential with shear wave velocity method[J]. Chinese Journal of Geotechnical Engineering, 1993, 15(1):74-80. (in Chinese)
[15] 中国科学院工程力学研究所,美国加州大学戴维斯分校. 1976年唐山地震土壤液化的经验和轻亚粘土液化预测的探讨[R].中美合作研究总结报告,1982. Institute of Engineering Mechanics, Chinese Academy of Sciences, University of California, Davis. Experience of soil liquefaction in 1976 Tangshan earthquake and discussion on prediction of low plasticity clays liquefaction potential[R]. Summary report of China-American Cooperation, 1982.(in Chinese)

相似文献/References:

[1]任红梅,吕西林,李培振.饱和砂土液化研究进展[J].地震工程与工程振动,2007,27(06):166.
 REN Hongmei,LU Xilin,LI Peizhen.Advances in liquefaction research on saturated soils[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2007,27(02):166.
[2]康飞,彭涛,杨秀萍.基于剪切波速与神经网络的砂砾土地震液化判别[J].地震工程与工程振动,2014,34(01):110.[doi:10.13197/j.eeev.2014.01.110.kangf.014]
 KANG Fei,PENG Tao,YANG Xiuping.Gravel soil liquefaction evaluation using artificial neural networks with shear wave velocity[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2014,34(02):110.[doi:10.13197/j.eeev.2014.01.110.kangf.014]
[3]方磊,许明军.碎石桩处理液化地基效果评价[J].地震工程与工程振动,2006,26(01):193.
 Fang Lei,Xu Mingjun.Evaluation method for liquefaction discrimination of gravel columns composite ground[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2006,26(02):193.
[4]汪云龙,吴晓阳,金利,等.砾性土抗液化能力与其液化判别方法研究进展[J].地震工程与工程振动,2016,36(05):086.[doi:10.13197/j.eeev.2016.05.86.wangyl.009]
 WANG Yunlong,WU Xiaoyang,JIN Li,et al.State-of-art of liquefaction resistance and prediction of gravelly soils[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2016,36(02):086.[doi:10.13197/j.eeev.2016.05.86.wangyl.009]

备注/Memo

备注/Memo:
收稿日期:2018-10-11;改回日期:2018-12-10。
基金项目:中国地震局地震预测研究所兰州科技创新基地基本科研业务费专项(2018IESLZ03);国家自然科学基金项目(51708525,51608496)
作者简介:董林(1985-),男,副研究员,博士,主要从事岩土地震工程研究.E-mail:donglin408@163.com
更新日期/Last Update: 1900-01-01