[1]李忠献,吴堃,石运东,等.水-振动台相互作用竖向动力试验研究[J].地震工程与工程振动,2019,39(03):001-7.[doi:10.13197/j.eeev.2019.03.1.lizx.001]
 LI Zhongxian,WU Kun,SHI Yundong,et al.Vertical dynamic tests on the interaction between water and shaking table[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2019,39(03):001-7.[doi:10.13197/j.eeev.2019.03.1.lizx.001]
点击复制

水-振动台相互作用竖向动力试验研究
分享到:

《地震工程与工程振动》[ISSN:/CN:]

卷:
39
期数:
2019年03
页码:
001-7
栏目:
论文
出版日期:
2019-06-30

文章信息/Info

Title:
Vertical dynamic tests on the interaction between water and shaking table
作者:
李忠献12 吴堃12 石运东12 郑庆涛12 李志永3
1. 天津大学 滨海土木工程结构与安全教育部重点实验室, 天津 300350;
2. 天津大学 建筑工程学院, 天津 300350;
3. SERVOTEST测试系统有限公司, 北京 101102
Author(s):
LI Zhongxian12 WU Kun12 SHI Yundong12 ZHENG Qingtao12 LI Zhiyong3
1. Key Laboratory of Coast Civil Structures Safety of Ministry of Education, Tianjin University, Tianjin 300350, China;
2. School of Civil Engineering, Tianjin University, Tianjin 300350, China;
3. SERVOTEST Testing Systems Ltd, Beijing 101102, China
关键词:
水下振动台水-振动台相互作用动水附加质量激励幅值激励频率水深
Keywords:
underwater shaking tableinteraction between water and shaking tableadded massexcitation amplitudeexcitation frequencywater depth
分类号:
TU4
DOI:
10.13197/j.eeev.2019.03.1.lizx.001
摘要:
水下振动台在设计制造过程中,需要考虑水与振动台间的动力相互作用,其产生的动水附加质量对振动台台面尺寸、台面形状、作动器能力、振动台控制方法的确定有重要影响。鉴于现有流固耦合作用相关理论不能用于水-振动台相互作用,本文通过试验方法,研究动水附加质量随振动台激励幅值、激励频率、水深的变化规律。试验结果表明,动水附加质量在水深较小时随着激励幅值的增大而减小,水深较大时随着幅值的增大先减小后增大;动水附加质量随激励频率的增大而减小,随水深的增大先增大后减小。通过公式拟合,建立水-振动台相互作用产生的动水附加质量的经验公式,为水下振动台系统优化设计提供依据。
Abstract:
During the design of underwater shaking table system, the interaction between water and shaking table needs to be considered because the added mass derived from it has great influence on the design of the dimension and shape of the table, the capacity of actuators, and the control algorithm of the shaking table. As the existing theory of fluid-structure interaction cannot be used to calculate the interaction between water and shaking table, this study chooses to investigate the changing rule of added mass with the excitation amplitude, the excitation frequency, and the water depth by dynamic tests. The results show that the added mass decreases with the increase of the amplitude of the excitation at low water depth, while it first decreases and then increases with the increase of the amplitude of the excitation at high water depth. The added mass decreases with the increase of the frequency of the excitation, and first increases and then decreases with the increase of the water depth. An empirical formula is proposed to calculate the added mass caused by the interaction between water and shaking table, which can guide the design of underwater shaking table system.

参考文献/References:

[1] 高春华, 纪金豹, 闫维明, 等. 地震模拟振动台技术在中国的发展[J]. 土木工程学报, 2014, 47(8):9-19. GAO Chunhua, JI Jinbao, YAN Weiming, et al. Developments of shaking table technology in China[J]. China Civil Engineering Journal, 2014, 47(8):9-19. (in Chinese)
[2] MORISON J R, JOHNSON J W, SCHAAF S A. The force exerted by surface waves on piles[J]. Journal of Petroleum Technology, 1950, 2(5):149-154.
[3] VELETSOS A S, PRASAD A M, HAHN G. Fluid-structure interaction effects for offshore structures[J]. Earthquake Engineering & Structural Dynamics, 1988, 16(5):631-652.
[4] VENUGOPAL V, VARYANI K S, WESTLAKE P C. Drag and inertia coefficients for horizontally submerged rectangular cylinders in waves and currents[J]. Journal of Engineering for the Maritime Environment, 2009, 223(1):121-136.
[5] WEPF D H, WOLF J P, BACHMANN H. Hydrodynamic-stiffness matrix based on boundary elements for time-domain dam-reservoir-soil analysis[J]. Earthquake Engineering & Structural Dynamics, 1988, 16(3):417-432.
[6] GOYAL A, CHOPRA A K. Earthquake response spectrum analysis of intake-outlet towers[J]. Journal of Engineering Mechanics, 1989, 115(7):1413-1433.
[7] CHOPRA A K, GOYAL A. Simplified earthquake analysis of intake-outlet towers[J]. Journal of Structural Engineering, 1991, 117(3):767-788.
[8] 何晓宇, 李宏男. 波浪与地震对小尺度桩柱的共同作用研究[J]. 地震工程与工程振动, 2007, 27(5):139-145. HE Xiaoyu, LI Hongnan. Research on piles with small dimension under the combination of seismic and wave action[J]. Earthquake Engineering and Engineering Dynamics, 2007, 27(5):139-145. (in Chinese)
[9] 杨万理, 李乔. 墩-水耦合计算模式及深水桥墩动力响应研究[J]. 地震工程与工程振动, 2012, 32(3):130-137. YANG Wanli, LI Qiao. Study on pier-water interaction calculation method and dynamic response of submerged piers[J]. Earthquake Engineering and Engineering Dynamics, 2012, 32(3):130-137. (in Chinese)
[10] 孟庆利, 叶建. 考虑墩-水耦合作用时桥墩动力反应分析[J]. 地震工程与工程振动, 2014, 34(4):219-227. MENG Qingli, YE Jian. Dynamic response analysis on bridge piers with pier-water interaction[J]. Earthquake Engineering and Engineering Dynamics, 2014, 34(4):219-227. (in Chinese)
[11] 崔杰, 周鹏, 李亚东, 等. 地震作用下海底沉管隧道的动力响应分析[J]. 地震工程与工程振动, 2016, 36(4):96-102. CUI Jie, ZHOU Peng, LI Yadong, et al. Earthquake dynamic response analysis of seabed under the action of immersed tunnel[J]. Earthquake Engineering and Engineering Dynamics, 2016, 36(4):96-102. (in Chinese)
[12] DING Y, MA R, SHI Y D, et al. Underwater shaking table tests on bridge pier under combined earthquake and wave-current action[J]. Marine Structures, 2018, 58:301-320.
[13] YVIN C, LEROYER A, VISONNEAU M, et al. Added mass evaluation with a finite-volume solver for applications in fluid-structure interaction problems solved with co-simulation[J]. Journal of Fluids and Structures, 2018, 81:528-546.
[14] 吴昌聚, 沈润杰, 何闻, 等. 振动台在无限流体域中台面附加质量研究[J]. 工程设计学报, 2002(5):275-278. WU Changju, SHEN Runjie, HE Wen, et al. Research on additional mass when vibration table vibrates in infinite liquid[J]. Engineering Design, 2002(5):275-278. (in Chinese)
[15] 吴昌聚, 沈润杰, 何闻, 等. 水下振动台动态特性的研究[J]. 机械设计, 2003(3):36-38. WU Changju, SHEN Runjie, HE Wen, et al. Study on dynamic characteristics of under-water vibration table[J]. Machine Design, 2003(3):36-38. (in Chinese)

备注/Memo

备注/Memo:
收稿日期:2019-1-18;改回日期:2019-2-22。
基金项目:国家重大科研仪器研制项目(91427901)
作者简介:李忠献(1961-),男,教授,博士,主要从事结构工程与防灾减灾研究.E-mail:zxli@tju.edu.cn
通讯作者:石运东(1983-),男,副教授,博士,主要从事结构抗震、隔震、减震研究.E-mail:yundong@tju.edu.cn
更新日期/Last Update: 1900-01-01