[1]周云,彭涵钰,裴熠麟,等.基于Pushdown方法的全装配式混凝土框架结构抗连续倒塌研究及灵敏度分析[J].地震工程与工程振动,2019,39(03):008-22.[doi:10.13197/j.eeev.2019.03.8.zhouy.002]
 ZHOU Yun,PENG Hanyu,PEI Yilin,et al.Study on progressive collapse resistance sensitivity of fully assembled precast concrete frame structures based on Pushdown analysis[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2019,39(03):008-22.[doi:10.13197/j.eeev.2019.03.8.zhouy.002]
点击复制

基于Pushdown方法的全装配式混凝土框架结构抗连续倒塌研究及灵敏度分析
分享到:

《地震工程与工程振动》[ISSN:/CN:]

卷:
39
期数:
2019年03
页码:
008-22
栏目:
论文
出版日期:
2019-06-30

文章信息/Info

Title:
Study on progressive collapse resistance sensitivity of fully assembled precast concrete frame structures based on Pushdown analysis
作者:
周云123 彭涵钰2 裴熠麟2 张琴2 陈太平2 易伟建12
1. 工程结构损伤诊断湖南省重点实验室, 湖南 长沙 410082;
2. 湖南大学 土木工程学院, 湖南 长沙 410082;
3. 绿色先进土木工程材料及应用技术湖南省重点实验室, 湖南 长沙 410082
Author(s):
ZHOU Yun123 PENG Hanyu2 PEI Yilin2 ZHANG Qin2 CHEN Taiping2 YI Weijian12
1. Hunan Provincial Key Laboratory of Damage Detection, Hunan University, Changsha 410082, China;
2. College of Civil Engineering, Hunan University, Changsha 410082, China;
3. Hunan Provincial Key Laboratory of Green Advanced Civil Engineering Materials and Application Technology, Changsha 410082, China
关键词:
全装配式混凝土结构现浇混凝土结构抗连续性倒塌Pushdown分析灵敏度分析
Keywords:
fully assembled precast concrete frame structurereinforcement concrete frame structureprogressive collapsePushdown analysissensitivity analysis
分类号:
TU375.4;TU391
DOI:
10.13197/j.eeev.2019.03.8.zhouy.002
摘要:
通过非线性静力Pushdown分析及灵敏度计算方法,对影响多层装配式混凝土框架结构抗连续倒塌性能的不确定性参数进行评估。首先以某牛腿-插销杆-角钢连接形式的全装配式混凝土框架子结构静载试验研究为基础,利用OpenSees有限元软件对该试验过程进行数值模拟,计算所得的结构荷载-位移曲线及失效模式均与试验结果较好吻合。在此基础上,对试验过程中的插销杆失效模式进行了参数优化分析,结果表明可通过增大螺杆直径或采用高强螺杆等方式增强插销杆的抗剪强度,从而有效提高结构二次防倒塌能力;其次,设计了一榀四跨七层的全装配式混凝土框架结构及相应的现浇结构,分别对拆除首层中柱和边柱两种不同失效工况下剩余结构的抗连续倒塌性能进行了非线性静力Pushdown计算;并通过选取包含荷载、材料以及结构几何尺寸等在内的15个不确定性参数,利用Tornado图形法对各不确定性参数的灵敏度进行了分析。结果表明,在中柱和边柱失效工况下,该多层全装配式框架结构在压拱阶段的极限承载能力分别较现浇结构低约18.5%和22.8%左右;同时纵筋屈服强度、混凝土抗压强度、楼面恒荷载、活荷载及梁纵筋截面积等不确定性参数对采用该连接形式的整体结构抗连续倒塌性能影响较大,而混凝土弹性模量、柱纵筋截面积、纵筋弹性模量、箍筋截面积以及梁宽尺寸等参数不确定性对结构性能影响相对较小,在结构设计阶段可忽略其变异性造成的影响。
Abstract:
In this paper, the nonlinear static Pushdown method and the sensitivity analysis method were utilized in the process of progressive collapse evaluation of the multi-story precast concrete (PC) structures influenced by the uncertain parameters. Firstly, the numerical analysis was conducted in OpenSees program based on the static test results of a fully assembled PC structure with the dowel rob joint connections. The analysis results revealed that both of the calculated load-displacement relationship and failure patterns were well agreed with the test results. Meanwhile, the parametric study was conducted according to the test failure mode of dowel rob, and it was revealed that the secondary progressive collapse performance of PC structure was effectively improved via employing the dowel rob with larger diameter or shear strength. Secondly, a 4-span 7-story fully assembled PC structure and reinforced concrete (RC) were built in OpenSees based on the calibrated model, and the Pushdown analysis was conducted for the residual structure with middle/exterior column loss scenario, respectively. Meanwhile, totally 15 uncertain parameters (i.e., load conditions, material properties, specimen dimensions, etc.) were selected to conduct the sensitivity analysis based on the Tornado method. the calculation results has revealed that the ultimate loading capacity of PC structure at compressive arch action was approximately 18.5% and 22.8% times lower than the corresponding RC structure under the two scenarios, respectively. Meanwhile, the uncertain parameters of rebar yielding strength, concrete compressive strength, dead loads, live loads and cross-section of beam rebar has placed an important in the progressive collapse resistance mechanism of PC structures. However, the discreteness influence of concrete elasticity modulus, cross-section of column rebar, rebar elasticity modulus, cross-section of stirrup and beam width was relative lower of the structural performance, which can be ignored during the structure design progress.

参考文献/References:

[1] Pearson C, Delatte N. Ronan point apartment tower collapse and its effect on building codes[J]. Journal of Performance of Constructed Facilities, 2005, 19(2):172-177.
[2] 李易. RC框架结构抗连续倒塌设计方法研究[D]. 北京:清华大学, 2011. LI Yi. Research on progressive collapse design method of RC framestructure[D]. Beijing:Tsinghua University, 2011. (in Chinese)
[3] 易伟建, 何庆锋, 肖岩. 钢筋混凝土框架结构抗倒塌性能的试验研究[J]. 建筑结构学报, 2007, 28(5):104-109. YI Weijian, HE Qingfeng, XIAO Yan. Experimental study on collapse resistance of reinforced concrete frame structures[J]. Journal of Building Structures, 2007, 28(5):104-109. (in Chinese)
[4] Mohamed O A. Assessment of progressive collapse potential in corner floor panels of reinforced concrete buildings[J]. Engineering Structures, 2009, 31(3):749-757.
[5] 吕大刚, 崔双双, 李雁军. 基于备用荷载路径Pushover方法的结构连续倒塌鲁棒性分析[J]. 建筑结构学报, 2010(增刊2):112-118. LV Dagang, CUI Shuangshuang, LI Yanjun. Robustness analysis for progressive collapse of structures using ALP-based pushover analysis approach[J]. Journal of Building Structures, 2010(S2):112-118. (in Chinese)
[6] Khandelwal K, El-Tawil S. Pushdown resistance as a measure of robustness in progressive collapse analysis[J]. Engineering Structures, 2011, 33(9):2653-2661.
[7] Iribarren B S, Berke P, Bouillard P. Investigation of the influence of design and material parameters in the progressive collapse analysis of RC structures[J]. Engineering Structures, 2011, 33(10):2805-2820.
[8] Qian K, Li B. Experimental and analytical assessment on RC interior beam-column subassemblages for progressive collapse[J]. Journal of Performance of Constructed Facilities, 2011, 26(5):576-589.
[9] 中国建筑学会建筑结构防倒塌专业委员. 钢筋混凝土框架结构拟静力倒塌试验研究及数值模拟竞赛Ⅲ:模拟结果分析[J]. 建筑结构, 2012, 42(11):27-30. Member of Building Structural Collapse Prevention Committee of Chinese Architectural Society. Pseudo static collapse test and numerical simulation competition of reinforced concrete frame structure Ⅲ:analysis of simulation results[J]. Building Structure, 2012, 42(11):27-30.(in Chinese)
[10] Yu J, Tan K H. Structural behavior of RC beam-column subassemblages under a middle column removal scenario[J]. Journal of Structural Engineering, 2013, 139(2):233-250.
[11] Nimse R B, Joshi D D, Patel P V. Experimental study on precast beam column connections constructed using RC corbel and steel billet under progressive collapse scenario[C]//Structures Congress, VA:ASCE, 2015:1108-1111.
[12] Qian K, Li B, Liu Y. Integrity of precast concrete structures to resist progressive collapse[C]//Geotechnical and Structural Engineering Congress, 2016:1976-1986.
[13] 潘毅, 陈侠辉, 姚蕴艺. 基于抽柱法的无粘结预应力装配式框架结构连续倒塌分析[J]. 工程力学, 2017, 34(12):162-170. PAN Yi, CHEN Xiahui, YAO Yunyi, Progressive collapse analysis of unbonded post-tensioned precast RC frame structures using column removal method[J]. Engineering Mechanics, 2017, 34(12):162-170. (in Chinese)
[14] Kang S B, Tan K H. Behaviour of precast concrete beam-column sub-assemblages subject to column removal[J]. Engineering Structures, 2015, 93:85-96.
[15] Kang S B, Tan K H. Progressive collapse resistance of precast concrete frames with discontinuous reinforcement in the joint[J]. Journal of Structural Engineering, 2017, 143(9):04017090-1-13.
[16] Elsanadedy H M, Almusallam T H, Al-Salloum Y A, et al. Investigation of precast RC beam-column assemblies under column-loss scenario[J]. Construction and Building Materials, 2017, 142:552-571.
[17] Feng D C, Wu G, Lu Y. Numerical investigation on the progressive collapse behaviour of precast reinforced concrete frame subassemblages[J]. Journal of Performance of Constructed Facilities, 2018, 32(3):04018027-1-14.
[18] Khandelwal K, El-Tawil S. Assessment of progressive collapse residual capacity using Pushdown analysis[J]. Structures Congress, 2008:1-8.
[19] 李易, 叶列平, 陆新征. 基于能量方法的RC框架结构连续倒塌抗力需求分析I:梁机制[J]. 建筑结构学报, 2011, 32(11):1-8. LI Yi, YE Lieping, LU Xinzheng. Progressive collapse resistance demand of RC frame structuresbased on energy method I:beam mechanism[J]. Journal of Building Structures, 2011, 32(11):1-8.(in Chinese)
[20] 钱凯, 罗达, 贺盛, 等. 钢筋混凝土框架结构底部相邻两柱失效的抗连续倒塌性能研究[J]. 建筑结构学报, 2018, 39(1):61-68. QIAN Kai, LUO Da, HE Sheng, et al. Progressive collapse performance of reinforced concrete frame structures subjected to ground two-column removal scenario[J]. Journal of Building Structures, 2018, 39(1):61-68.(in Chinese)
[21] 于晓辉, 钱凯, 吕大刚. 基于随机Pushdown方法的钢筋混凝土框架结构抗连续倒塌能力概率评估[J]. 建筑结构学报, 2017, 38(2):83-89. YU Xiaohui, QIAN Kai, LV Dagang. Probabilistic assessment of structural resistance of RC frame structures against progressive collapse usingrandom Pushdown analysis[J]. Journal of Building Structures, 2017, 38(2):83-89.(in Chinese)
[22] Macgregor J G. Development of a probability based load criterion for American national standard A58-building code requirements for minimum design loads in buildings and other structures[M]. Washington D C:US Department of Commerce, National Bureau of Standards, 1980.
[23] 宋鹏彦, 吕大刚, 崔双双. 地震作用下钢筋混凝土框架结构连续倒塌极限状态可靠度分析[J]. 建筑结构学报, 2013, 34(4):15-22. SONG Pengyan, LV Dagang, CUI Shuangshuang. Reliability analysis of progressive collapse limit state of reinforced concrete frame structure under earthquakes[J]. Journal of Building Structures, 2013, 34(4):15-22.(in Chinese)
[24] GB50010-2010混凝土结构设计规范[S]. 北京:中国建筑工业出版社, 2010. GB50010-2010 Code for Design of Concrete Structures[S]. Beijing:China Construction Industry Press, 2010.(in Chinese)
[25] 陈太平. 全装配式混凝土框架结构防连续倒塌试验研究[D]. 长沙:湖南大学, 2018. CHEN Taiping. Static load test study on progressive collapse resistance of fully prefabricated concrete frame structures[D]. Changsha:Hunan University, 2018. (in Chinese)
[26] Alath S, Kunnath S K. Modeling inelastic shear deformation in RC beam-column joints[C]//Proceeding of 10th Conference on Engineering Mechanics, VA:ASCE, 1995:822-825.
[27] Ercolino M, Bellotti D, Magliulo G, et al. Vulnerability analysis of industrial RC precast buildings designed according to modern seismic codes[J]. Engineering Structures, 2018, 158:67-78.
[28] 杜轲, 孙景江, 许卫晓. 纤维模型中单元、截面及纤维划分问题研究[J]. 地震工程与工程振动, 2012, 32(5):039-46. DU Ke, SUN Jingjiang, XU Weixiao. The division of element, section and fiber in fiver model[J]. Earthquake Engineering and Engineering Dynamics, 2012, 32(5):039-46. (in Chinese)
[29] Zhao J, Sritharan S. Modeling of strain penetration effects in fiber-based analysis of reinforced concrete structures[J]. ACI Structural Journal, 2007, 104(2):133-141.
[30] United States Department of Defense (DoD). UFC 4-023-03, Unified Facilities Criteria:Design of Structures to Resist Progressive Collapse[S]. Washington D C:2005.
[31] General Service Administration (GSA). Progressive Collapse Analysis and Design Guidelines for New Federal Office Buildings and Major Modernization Project[S]. Washington D C:2003.
[32] Park J, Kim J. Fragility analysis of steel moment frames with various seismic connections subjected to sudden loss of a column[J]. Engineering Structures, 2010, 32(6):1547-1555.
[33] Mander J B, Priestley M J N, Park R. Theoretical stress-strain model for confined concrete[J]. Journal of Structural Engineering, 1988, 114(8):1804-1826.
[34] Mirza S A, Hatzinikolas M, Macgregor J G. Statistical descriptions of strength of concrete[J]. Journal of Structural Division, 1979, 105(ST6):1021-1037.
[35] Mirza S A, Macgregor J G. Variability of mechanical properties of reinforcing bars[J]. Journal of the Structural Division, 1979, 105(5):921-937.
[36] 吴文朋,李立峰,徐卓君,等.不确定性对钢筋混凝土桥梁系统地震易损性的影响[J]. 地震工程与工程振动, 2018, 38(6):160-170. WU Wenpeng, LI Lifeng, XU Zhuojun, et al. Influences of uncertainties on system seismic fragility for the reinforced concrete bridges[J]. Earthquake Engineering and Engineering Dynamics, 2018, 38(6):160-170. (in Chinese)

备注/Memo

备注/Memo:
收稿日期:2018-12-2;改回日期:2019-2-20。
基金项目:国家重点研发计划专项项目(2016YFC0701400,2016YFC0701308);湖南省重点研发计划项目(2017SK2220);国家自然科学基金项目(51878264)
作者简介:周云(1979-),男,教授,博士,主要从事装配式建筑及结构健康监测方面研究.E-mail:zhouyun05@hnu.edu.cn
通讯作者:裴熠麟(1995-),男,硕士研究生,主要从事装配式结构方面研究.E-mail:yilin_pei@hnu.edu.cn
更新日期/Last Update: 1900-01-01