[1]姜伟,李兆焱,卢坤玉,等.5.28吉林松原地震液化特征初步分析[J].地震工程与工程振动,2019,39(03):052-60.[doi:10.13197/j.eeev.2019.03.52.Jiangw.006]
 JIANG Wei,LI Zhaoyan,LU Kunyu,et al.Preliminary analysis of liquefaction characteristics induced by the Songyuan earthquake of May 28 in Jilin, China[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2019,39(03):052-60.[doi:10.13197/j.eeev.2019.03.52.Jiangw.006]
点击复制

5.28吉林松原地震液化特征初步分析
分享到:

《地震工程与工程振动》[ISSN:/CN:]

卷:
39
期数:
2019年03
页码:
052-60
栏目:
论文
出版日期:
2019-06-30

文章信息/Info

Title:
Preliminary analysis of liquefaction characteristics induced by the Songyuan earthquake of May 28 in Jilin, China
作者:
姜伟12 李兆焱2 卢坤玉2 张思宇2
1. 黑龙江八一农垦大学 土木水利学院, 黑龙江 大庆 163319;
2. 中国地震局 工程力学研究所, 中国地震局地震工程与工程振动重点实验室, 黑龙江 哈尔滨 150080
Author(s):
JIANG Wei12 LI Zhaoyan2 LU Kunyu2 ZHANG Siyu2
1. College of Civil Engineering and Water Conservancy of Heilongjiang Bayi Agricultural University, Daqing 163319, China;
2. Institute of Engineering Mechanics, China Earthquake Administration, Key Laboratory of Earthquake Engineering and Engineering Vibration of China Earthquake Administration, Harbin 150080, China
关键词:
2018松原地震液化低震级低水位
Keywords:
2018 Songyuan earthquakeliquefactionlow magnitudelow water level
分类号:
TU45
DOI:
10.13197/j.eeev.2019.03.52.Jiangw.006
摘要:
2018年5月28日松原市宁江区发生Mw5.2级地震,场地效应突出,尤以液化最为显著。本文通过调查研究,指出了该次地震液化特点。分析表明:该次地震是历史上具有显著液化现象的震级最低的一次地震,发现液化场地超过200个,最大喷砂喷水砂坑直径3 m,坑深超过2 m;Ⅶ度烈度区液化场地地下水位接近7 m,超出常规认识;Ⅵ度烈度区分布10余个液化场地,喷砂冒水明显;扶余-肇东断裂、第二松花江断裂附近液化带分布明显,液化场地分布北-东方向分布明显;与地震烈度图长轴方向大体一致,液化场地条带状分布明显,以南北向分布突出。本次地震液化的特殊现象,丰富了认识,为未来规范修订和深入研究提供了线索。
Abstract:
The Mw5.2 earthquake occurred in Ningjiang District of Songyuan City on May 28, 2018, along prominent site effect, especially liquefaction. Through field investigation, statistics and analysis, the characteristics of the earthquake liquefaction are pointed out. In this paper the analysis indicates that this is the lowest magnitude earthquake with significant liquefaction phenomena in history. It is found that there are more than 200 liquefied sites, the maximum sand blasting pit diameter is 3 m, and the pit depth is more than 2 m. The groundwater level of liquefied sites is close to 7 m in the Ⅶ intensity region, which is beyond the conventional knowledge. More than 10 liquefied sites are distributed in the VI intensity region, and have obvious sandblasting. The liquefaction zones are obviously distributed near the Fuyu-Zhaodong fault and the second Songhuajiang fault, and the distribution of liquefaction sites is obvious in the north-east direction. The special phenomena of liquefaction in this earthquake have enriched our understanding and provided clues for future revision and in-depth study of the code.

参考文献/References:

[1] 郭迅.松原市震害预测项目成果报告[R]. 三河:防灾科技学院, 2017. GUO Xun. Project results report of earthquake hazard prediction in Songyuan city[R]. Sanhe:Institute of Disaster Prevention, 2017.(in Chinese)
[2] 张克绪, 谢君斐. 土动力学[M]. 北京:地震出版社, 1980. ZHANG Kexu, XIE Junfei. Soil dynamics[M]. Beijing:Seismological Press, 1980.(in Chinese)
[3] 陈运泰, 刘瑞丰.地震的震级[J].地震地磁观测与研究, 2004(6):1-12. CHEN Yuntai, LIU Ruifeng. Earthquake magnitude[J]. Seismological and Geomagnetic Observation and Research, 2004(6):1-12.(in Chinese)
[4] 傅承义, 陈运泰, 祁贵仲. 地球物理学基础[M]. 北京:科学出版社, 1985. FU Chengyi, CHEN Yuntai, QI Guizhong. Geophysics basics[M]. Beijing:Science Press, 1985.(in Chinese)
[5] Gutenberg B. Amplitudes of surface waves and magnitudes of shallow earthquakes[J]. Bulletin of the Seismological Society of America, 1945, 35:3-12.
[6] Chinnery M A, North R G. The frequency of very large earthquake[J].Science, 1975, 190:1197-1198.
[7] Kanamori H. The energy release in great earthquakes[J]. J Geophys Res, 1977, 82:2981-2987.
[8] Hanks T C, Kanamori H. A moment magnitude scale[J]. J Geophys Res, 1979, 84(B5):2348-2350.
[9] USGS. New USGS earthquake magnitude policy[M]. MCEER Information Service News, 2002.
[10] Boulanger R W, Idriss I M. Magnitude scaling factors in liquefaction triggering procedures[J]. Soil Dynamics and Earthquake Engineering, 2015, 79:296-303.
[11] Rodgers A J, Pitarka A, Petersson N A, et al. Broadband (0-4HZ) ground motions for a magnitude 7.0 hayward fault earthquake with three-dimensional structure and topography[J]. Geophysical Research Letters, 2018, 45(2):739-747.
[12] 俞言祥. 长周期地震动衰减关系研究[D]. 北京:中国地震局地球物理研究所, 2002. YU Yanxiang. Study on attenuation relationships of long period ground motions[D]. Beijing:Institute of Geophysics, China Earthquake Administration, 2002.(in Chinese)
[13] Idriss I M, Boulanger R W. CPT and SPT based liquefaction triggering procedures[R]. Report No. UCD/CGM-14/01, Dept. Civil & Environ. Eng., UC Davis, 2014.
[14] Moss R E. CPT-BASED probabilistic assessment of seismic soil liquefaction initiation[D].University of California, Berkeley, 2003.
[15] 王维铭. 场地液化特征研究及液化影响因素评价[D].哈尔滨:中国地震局工程力学研究所, 2013. WANG Weiming. Study on liquefaction characteristics and liquefaction-influencing factors assessment[D]. Harbin:Institute of Engineering Mechanics, China Earthquake Administration, 2013.(in Chinese)
[16] GB50011-2001建筑抗震设计规范[S]. 北京:中国建筑工业出版社, 2001. GB50011-2001 Code for Seismic Design of Buildings[S]. Beijing:China Architecture and Building Press,2001. (in Chinese)
[17] 谢君斐. 关于修改抗震规范砂土液化判别式的几点意见[J].地震工程与工程振动, 1984, 4(2):95-126. XIE Junfei. Some comments on the formula for estimating the liquefaction of sand in revised a seismic design code[J]. Earthquake Engineering and Engineering Dynamics, 1984, 4(2):95-126. (in Chinese)
[18] 袁晓铭, 王海, 曹振中, 等. 汶川地震砾性土液化场地特征解析[J]. 地球物理学报, 2017, 60(7):2733-2743. YUAN Xiaoming, WANG Hai, CAO Zhenzhong, et al. Interpretation to characteristics of gravelly soils sites that liquefild in Wenchuan earthquake[J]. Chinese Journal of Geophysics, 2017, 60(7):2733-2743.(in Chinese)

相似文献/References:

[1]薛新华,杨兴国.基于减法聚类模糊神经网络的砂土液化势判别[J].地震工程与工程振动,2012,32(02):172.
 XUE Xinhua,YANG Xingguo.Application of fuzzy neural network to the prediction of sand liquefaction based on subtraction clustering[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2012,32(03):172.
[2]陈龙伟,袁晓铭.求解液化土表位移两种简化理论模型的比较研究[J].地震工程与工程振动,2010,30(06):141.
 CHEN Longwei,YUAN Xiaoming.Comparison between two simplified theoretical models for calculating surface displacement on liquefiable sites[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2010,30(03):141.
[3]王维铭,袁晓铭,陈龙伟,等.汶川大地震中德阳地区液化特点分析[J].地震工程与工程振动,2011,31(02):145.
 WANG Weiming,YUAN Xiaoming,CHEN Longwei,et al.Liquefaction characteristic analysis in Deyang region in the Wenchuan earthquake[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2011,31(03):145.
[4]何剑平,陈卫忠.自由场典型液化特征数值模拟试验[J].地震工程与工程振动,2011,31(02):162.
 HE Jianping,CHEN Weizhong.Numerical simulation experiment of typical liquefaction characteristics for free field[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2011,31(03):162.
[5]孙锐,袁晓铭,唐福辉.液化识别方法盲测对比——以2011年2月22日新西兰6.3级地震为例[J].地震工程与工程振动,2011,31(03):001.
 SUN Rui,YUAN Xiaoming,TANG Fuhui.Blind detection of liquefaction sites by existing methods for the 22 Feb.2011 M_s6.3 New Zealand earthquake[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2011,31(03):001.
[6]王维铭,袁晓铭,孟上九,等.汶川Ms8.0级大地震中成都地区液化特征研究[J].地震工程与工程振动,2011,31(04):137.
 WANG Weiming,YUAN Xiaoming,MENG Shangjiu,et al.Liquefaction characteristics in Chengdu region in Ms8.0 Wenchuan earthquake[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2011,31(03):137.
[7]曹振中,徐学燕,袁晓铭.江油火车站典型液化震害分析[J].地震工程与工程振动,2013,33(01):166.
 CAO Zhenzhong,XU Xueyan,YUAN Xiaoming.Typical case study on liquefaction-induced damage to Jiangyou Railway Station in Wenchuan Earthquake[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2013,33(03):166.
[8]李博,Zeng Xiangwu,王艳茹.大应变条件海水浸蚀下人工胶结土动力特性研究[J].地震工程与工程振动,2013,33(01):192.
 LI Bo,ZENG Xiangwu,WANG Yanru.Effect of sea water attack on dynamic behavior of artificially cemented sand in large strain[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2013,33(03):192.
[9]金佳旭,梁力,陈天宇,等.基于液化流动模型的尾矿坝地震响应分析[J].地震工程与工程振动,2013,33(03):232.
 JIN Jiaxu,LIANG Li,CHEN Tianyu,et al.Analysis of tailings dam earthquake responses based on liquefaction flow model[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2013,33(03):232.
[10]汪明武,Susumu Iai.地下RC结构物地震响应特征土工离心试验的模拟[J].地震工程与工程振动,2007,27(03):150.
 WANG Mingwu,Susumu Iai.Numerical simulation of centrifuge modeling for seismic responses of underground RC structures[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2007,27(03):150.

备注/Memo

备注/Memo:
收稿日期:2018-11-10;改回日期:2019-2-11。
基金项目:国家自然科学基金青年基金项目(51508532);黑龙江省自然科学基金项目(LH2019E099);中国地震局工程力学研究所基本科研业务费专项资助项目(2018A01);国家重点研发计划政府间国际科技创新合作重点专项(2016YFE0105500)
作者简介:姜伟(1980-),男,讲师,博士,主要从事地震工程研究.E-mail:jiangwei429@126.com
通讯作者:李兆焱(1982-),男,副研究员,博士,主要从事岩土地震工程、土动力学研究.E-mail:hkjlizhaoyan@163.com
更新日期/Last Update: 1900-01-01