[1]王荣霞,王雅静,曹宏琨,等.三跨斜交连续小箱梁桥动力特性分析及试验[J].地震工程与工程振动,2019,39(03):122-133.[doi:10.13197/j.eeev.2019.03.122.wangrx.012]
 WANG Rongxia,WANG Yajing,CAO Hongkun,et al.Dynamic characteristics analysis and test of three-span skew continuous small box girder bridge[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2019,39(03):122-133.[doi:10.13197/j.eeev.2019.03.122.wangrx.012]
点击复制

三跨斜交连续小箱梁桥动力特性分析及试验
分享到:

《地震工程与工程振动》[ISSN:/CN:]

卷:
39
期数:
2019年03
页码:
122-133
栏目:
论文
出版日期:
2019-06-30

文章信息/Info

Title:
Dynamic characteristics analysis and test of three-span skew continuous small box girder bridge
作者:
王荣霞1 王雅静1 曹宏琨1 张宇明2
1. 河北工业大学 土木与交通学院, 天津 300401;
2. 廊坊市交通勘察设计院, 河北 廊坊 065000
Author(s):
WANG Rongxia1 WANG Yajing1 CAO Hongkun1 ZHANG Yuming2
1. School of Civil Engineering and Transportation, Hebei University of Technology, Tianjin 300401, China;
2. Langfang Designing Institute of Traffic Investigation, Langfang 065000, China
关键词:
三跨连续斜交小箱梁桥模态分析竖弯频率简支转连续Midas梁格模型
Keywords:
three-span continuous skew small box girder bridgemodal analysisvertical bending frequencysimply supported continuousMidas beam lattice model
分类号:
U441.3
DOI:
10.13197/j.eeev.2019.03.122.wangrx.012
摘要:
本文以三跨连续斜交小箱梁桥为例,应用有限元软件Midas civil分别建立了斜交角度为0~60°(步长为5°)的全桥模型。分析了不同斜交角度对桥梁结构固有振型和频率的影响,对现有桥梁规范中用于连续梁桥冲击系数计算的基频的计算公式给予修正。分析表明:三跨连续斜交小箱梁桥前两阶竖弯频率均随斜交角度的增大而增大,其中1阶竖弯频率所受影响最为显著,当斜交角度大于25°时,斜交角的影响不能忽略,其增大值最大可达31.6%;而第3阶竖弯频率受斜桥弯扭耦合效应的影响,随斜交角度的增大其频率变化不超过0.9%,在计算正、负弯矩处基频时应予以考虑。简支转连续与整体浇筑两种方法施工的结构动力特性区别不大,全桥模型中是否设置桥墩对结构频率影响不大。实桥动载试验验证了本文所提出的基频修正公式是合理的。
Abstract:
In this paper, whole bridge finite element model of a three-span continuous skew box girder bridge is established in Midas civil, with skew angle of 0~60°(step length of 5°).The influence of different skew angles on natural modes and frequencies of bridge structures is analyzed, and the formula of fundamental frequency in current bridge codes used in calculating impact coefficient of continuous beam bridges is modified. The analysis shows that, for three-span skew continuous box girder bridge, the vertical bending frequency increases with skew angle increase, in which the first-order vertical bending frequency is most affected, and the increase value can reach up to 31.6% when the skew angle is greater than 25°, the influence of skew angle can’t be neglected. But the third-order vertical bending frequency change does not exceed 0.9% with the increase of the skew angle, because of bending-torsional coupling effect of the skew bridge, which should be taken into account when calculation the fundamental frequency at positive and negative bending moments. There is little difference in structural dynamic characteristics between the two construction methods of simply supported to continuous and integral concreting. Whether the pier is installed in the whole bridge model has little effect on the structure frequency. The real bridge dynamic load test verifies that fundamental frequency correction formula proposed in this paper is reasonable.

参考文献/References:

[1] 樊超越.多梁式混凝土斜梁桥的车桥耦合震动分析[D].福州:福州大学, 2013. FAN Chaoyue. Dynamic analysis of vehicle-bridge coupling for multi-beam concrete skew girder bridge[D]. Fuzhou:Fuzhou University, 2013.(in Chinese)
[2] 张等.不同斜交角度简支T梁桥基频计算与实验[J].湖南交通科技, 2016, 42(1):74-77. ZHANG Deng. Fundamental frequency calculation and experiment of simply supported T beam bridge with different skew angles[J]. Hunan Communication Science and Technology, 2016, 42(1):74-77.(in Chinese)
[3] 袁向荣.基于连续梁振动分析的桥梁冲击系数研究[J].四川建筑科学研究, 2013, 39(4):190-194. YUAN Xiangrong.Study of the impact factor based on the dynamic analysis of the continuous beam[J]. Sichuan Architectural Science Research, 2013, 39(4):190-194.(in Chinese)
[4] 胡帮义, 袁向荣, 杨勇, 等.4等跨连续梁模态实验分析及冲击系数研究[J].实验技术与管理, 2015, 32(8):70-74. HU Bangyi, YUAN Xiangrong, YANG Yong, et al.Modal test and analysis on a four equal spans continuous beam and study of impact factor[J]. Experimental Technology and Management. 2015. 32(8):70-74.(in Chinese)
[5] 刘辉, 袁向荣, 蔡卡宏, et al.五等跨连续梁模态分析实验及冲击系数[J].实验室研究与探索, 2016, 35(5):10-13. LIU Hui, YUAN Xiangrong, CAI Kahong. et al.Modal analysis test to a five equal spans continuous beam and study of impact factor[J]. Laboratory Research and Exploration, 2016, 35(5):10-13.(in Chinese)
[6] 孙中洋.先简支后连续梁桥支座模拟方式对主梁受力性能的影响分析[J].公路交通技术, 2017, 33(5):58-62. SUN Zhongyang.Analysis on the influence to mechanical performance of main beam by simultaneous mode of first simple support then continuous beam bridge[J]. Highway Traffic Technology, 2017, 33(5):58-62.(in Chinese)
[7] 薛根平.不同斜交角度简支T形梁桥的基频计算及试验分析[J].山西交通科技, 2015, 43(6):65-69. XUE Genping.Fundamental frequency calculation and experimental analysis of simply supported T-Beam bridge with different skew angle[J]. Shanxi Traffic Science and Technology, 2015, 43(6):65-69.(in Chinese)
[8] 刘小燕, 袁龙文, 何志军.斜交空心板桥基频计算与试验[J].中外公路, 2012, 32(3):189-191. LIU Xiaoyan, YUAN Longwen, HE Zhijun.Calculation and test of foundation frequency of skew hollow slab bridge[J]. Chinese and foreign highways, 2012, 32(3):189-191.(in Chinese)
[9] 王荣霞, 任腾腾, 宋娃丽, 等.三跨连续斜交T梁桥的动力特性研究[J].公路交通科技, 2018, 35(5):57-64. WANG Rongxia, REN Tengteng, SONG Wali.et al.A study on dynamic characteristics of three span continuous skew T-beam bridge[J]. Highway Traffic Technology, 2018, 35(5):57-64.(in Chinese)
[10] JT/T 391-2009公路桥梁盆式橡胶支座[S].北京:人民交通出版社, 2009. JT/T391-2009 Pot Bearings for Highway Bridges[S].Beijing:China Communications Press, 2009.(in Chinese)
[11] 李林, 李忠评, 马奎.梁格法在斜交箱梁结构分析中的应用[J].公路交通技术, 2011, 28(3):63-67. LI Lin, LI Zhongping, MA Kui.Application of grillage method in the analysis for heterotropic box girder structure[J]. Highway Traffic Technology, 2011, 28(3):63-67.(in Chinese)
[12] JTG D62-2012公路钢筋混凝土及预应力混凝土桥涵设计规范[S].北京:人民交通出版社, 2012. JTG D62-2012 Code for Design of Highway Reinforced Concrete and Prestressed Concrete Bridges and Culverts[S].Beijing:China Communications Press, 2012.(in Chinese)
[13] 宋仙云, 唐小兵, 刘世建, 等.简支转连续梁桥双支座对梁受力影响分析[J].交通科技, 2010, 36(2):4-6. SONG Xianyun, TANG Xiaobing, LIU Shijian, et al. Analysis on the influence of double supports of simply supported to continuous beam bridge on beam force[J]. Transportation Science and Technology, 2010, 36(2):4-6.(in Chin