[1]王文章,廖晨聪,周香莲,等.可液化土层中地下结构上浮及其控制措施[J].地震工程与工程振动,2019,39(03):159-167.[doi:10.13197/j.eeev.2019.03.159.wangwz.016]
 WANG Wenzhang,LIAO Chencong,ZHOU Xianglian,et al.The floating of underground structure in liquefiable soil layer and its control measures[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2019,39(03):159-167.[doi:10.13197/j.eeev.2019.03.159.wangwz.016]
点击复制

可液化土层中地下结构上浮及其控制措施
分享到:

《地震工程与工程振动》[ISSN:/CN:]

卷:
39
期数:
2019年03
页码:
159-167
栏目:
论文
出版日期:
2019-06-30

文章信息/Info

Title:
The floating of underground structure in liquefiable soil layer and its control measures
作者:
王文章1 廖晨聪1 周香莲1 张中杰2 张擎宇2
1. 上海交通大学 船舶海洋与建筑工程学院, 上海 200240;
2. 上海市城市建设设计研究总院(集团)有限公司, 上海 200125
Author(s):
WANG Wenzhang1 LIAO Chencong1 ZHOU Xianglian1 ZHANG Zhongjie2 ZHANG Qingyu2
1. School Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
2. Shanghai Urban Construction Design & Research Institute, Shanghai 200125, China
关键词:
地震液化地下结构数值分析超孔压比上浮
Keywords:
earthquake liquefactionunderground structurenumerical simulationEPWPRuplift
分类号:
TU4
DOI:
10.13197/j.eeev.2019.03.159.wangwz.016
摘要:
地震荷载引起的饱和土体液化会导致地下结构上浮,利用一种水-土耦合本构,对液化土层中地下结构上浮及其控制措施展开研究。建立了有限元模型,模拟得到不同地震强度作用下模型加速度、超孔压(比)、上浮位移等结果,模拟并分析采取不同地基处理措施对结构上浮的控制作用。结果表明该本构能模拟可液化土层中地下结构动力响应,随着地震强度的增大,土体液化深度会发展;地下结构上浮分别由土体液化和土体振动引起,且前者是造成结构破坏的主要原因;抗拔桩法、倒滤层减压法以及换填法均可改善地下结构上浮情况,其中换填法和抗拔桩法控制上浮效果较好。
Abstract:
The liquefaction of saturated soil caused by seismic loads will cause the underground structure to float. A water-soil coupling constitutive is used to study the uplift of underground structures in the liquefied soil layer and its control measures. The finite element model is established to simulate the results of model acceleration, excess pore pressure (ratio) and floating displacement under different seismic intensities. The effects of different ground treatment measures on structural floating are simulated and analyzed. The results show that the constitutive model can simulate the dynamic response of underground structures in liquefiable soil layers. With the increase of seismic intensity, the liquefaction depth of soil will develop. The uplift of underground structures is caused by soil liquefaction and soil vibration, and the former is the main reason for structural damage. The uplift pile method, the decompression method and the replacement method can all improve the floating of the underground structure. Among them, the replacement method and the uplift pile method have better control effect.

参考文献/References:

[1] 黄雨, 于淼, BHATTACHARYA. 2011年日本东北地区太平洋近海地震地基液化灾害综述[J]. 岩土工程学报, 2013, 35(5):834-840. HUANG Yu, YU Miao, BHATTACHARYA. A summary of ground-based liquefaction disasters in the Pacific Ocean Offshore in Northeast Japan in 2011[J]. Journal of Geotechnical Engineering, 2013, 35(5):834-840.(in Chinese)
[2] 刘华北, 宋二祥. 可液化土中地铁结构的地震响应[J]. 岩土力学, 2005, 26(3):381-386. LIU Huabei, SONG Erxiang. Seismic response of subway structure in liquefiable soil[J]. Rock and Soil Mechanics, 2005, 26(3):381-386.(in Chinese)
[3] 汪明武, 李丽. 浅埋矩形RC结构物地震液化上浮有效应力分析[J]. 振动工程学报, 2008, 21(3):286-290. WANG Mingwu, LI Li. Analysis of floating effective stress of shallow buried rectangular RC structures during earthquake liquefaction[J]. Journal of Vibration Engineering, 2008, 21(3):286-290.(in Chinese)
[4] 林均岐, 李祚华, 胡明祎. 不均匀场地土液化引起的地下管道上浮反应研究[J]. 地震工程与工程振动, 2004, 24(4):120-123. LIN Junqi, LI Zuohua, HU Mingyi. Study on uplifting reaction of underground pipelines caused by soil liquefaction in non-uniform sites[J]. Earthquake Engineering and Engineering Dynamics, 2004, 24(4):120-123.(in Chinese)
[5] 王刚, 张建民, 魏星. 可液化土层中地下车站的地震反应分析[J]. 岩土工程学报, 2011, 33(10):1623-1627. WANG Gang, ZHANG Jianmin, WEI Xing. Seismic response analysis of underground station in liquefiable soil layer[J]. Journal of Geotechnical Engineering,2011, 33(10):1623-1627.(in Chinese)
[6] 杨剑, 王恒栋. 液化土中地下综合管廊的地震响应分析初探[J]. 地下空间与工程学报, 2013, 9(增刊1):1762-1769. YANG Jian, WANG Hengdong. Seismic response analysis of underground comprehensive pipe gallery in liquefied soil[J]. Journal of Underground Space and Engineering, 2013, 9(S1):1762-1769.(in Chinese)
[7] 凌贤长, 唐亮, 于恩庆. 可液化场地地震振动孔隙水压力增长研究的大型振动台试验及其数值模拟[J]. 岩石力学与工程学报, 2006, 25(Z2):3998-4003. LING Xianchang, TANG Liang, YU Enqing. Large-scale shaking table test and study on numerical simulation of pore water pressure growth in liquefiable sites[J]. Journal of Rock Mechanics and Engineering, 2006, 25(Z2):3998-4003.(in Chinese)
[8] 吕西林, 任红梅, 李培振,等. 液化场地自由场体系的数值分析及振动台试验验证[J]. 岩石力学与工程学报, 2009, 28(增刊2):4046-4053. LV Xilin, REN Hongmei, LI Peizhen, et al. Numerical analysis of free field system on liquefied site and verification by shaking table test[J]. Journal of Rock Mechanics and Engineering, 2009, 28(S2):4046-4053.(in Chinese)
[9] 安军海, 陶连金, 王焕杰,等. 可液化场地下盾构扩挖地铁车站结构地震破坏机制振动台试验[J]. 岩石力学与工程学报, 2017, 36(8):2018-2030. AN Junhai, TAO Lianjin, WANG Huanjie, et al. Shake-out test for earthquake damage mechanism of subway station structure under shield tunneling in liquefiable site[J]. Journal of Rock Mechanics and Engineering, 2017, 36(8):2018-2030.(in Chinese)
[10] Zhang F, Ye B, Noda T, et al. Explanation of cyclic mobility of soils:approach by stress-induced anisotropy[J]. Soils & Foundations, 2011, 47(4):635-648.
[11] Bao Y, Ye G, Ye B, et al. Seismic evaluation of soil-foundation-superstructure system considering geometry and material nonlinearities of both soils and structures[J]. Soils & Foundations, 2012, 52(2):257-278.
[12] Ye B, Ye G, Zhang F, et al. Experiment and numerical simulation of repeated liquefaction-consolidation of sand[J]. Soils & Foundations, 2011, 47(3):547-558.
[13] Xia Z F, Ye G L, Wang J H, et al. Fully coupled numerical analysis of repeated shake-consolidation process of earth embankment on liquefiable foundation[J]. Soil Dynamics & Earthquake Engineering, 2010, 30(11):1309-1318.
[14] Hashiguchi K. Subloading surface model in unconventional plasticity[J]. International Journal of Solids & Structures, 1989, 25(8):917-945.
[15] Asaoka A, Nakano M, Noda T. Superloading yield surface concept for highly structured soil behavior[J]. Journal of the Japanese Geotechnical Society, 2000, 40(2):99-110.
[16] Hushmand B, Scott R F, Crouse C B. Centrifuge liquefaction tests in a laminar box[J]. Géotechnique, 1988, 38(2):253-262.
[17] 胡记磊, 刘华北. 改进碎石排水措施的地铁结构液化上浮响应数值试验[J]. 隧道建设, 2017, 37(a02):82-86. HU Jilei, LIU Huabei. Numerical test of liquefaction and floating response of subway structure with improved gravel drainage measures[J]. Tunnel Construction, 2017, 37(a02):82-86.(in Chinese)

相似文献/References:

[1]景立平,孟宪春,孙海峰,等.三层地铁车站振动台试验的数值模拟[J].地震工程与工程振动,2012,32(01):098.
 JING Liping,MENG Xianchun,SUN Haifeng,et al.Numerical simulation of three-story subway station shaking table test[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2012,32(03):098.
[2]李英民,王璐,刘阳冰,等.地下结构抗震计算地基弹簧系数取值方法研究[J].地震工程与工程振动,2012,32(01):106.
 LI Yingmin,WANG Lu,LIU Yangbing,et al.Analysis of methods for determining the spring constant of ground foundation in seismic design of underground structures[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2012,32(03):106.
[3]袁蕾,姜忻良.地铁换乘站不规则结构对其地震响应的影响[J].地震工程与工程振动,2011,31(01):074.
 YUAN Lei,JIANG Xinliang.Influence of irregular structure of subway transfer station on its seismic responses[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2011,31(03):074.
[4]佘芳涛,邵生俊,杨素新.可液化土层隧道围岩的动力响应及液化区发展分析[J].地震工程与工程振动,2011,31(03):011.
 SHE Fangtao,SHAO Shengjun,YANG Suxin.Analysis of dynamic responses and liquefaction area development of tunnel peripheral rock in saturated liquefiable soil[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2011,31(03):011.
[5]还毅,方秦,柳锦春,等.考虑时空耦联的等效惯性加速度加载的地下结构pushover分析[J].地震工程与工程振动,2011,31(04):064.
 HUAN Yi,FANG Qin,LIU Jinchun,et al.Pushover analysis of underground structures by the time-space coupled equivalent inertial acceleration[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2011,31(03):064.
[6]景立平,孟宪春,孙海峰,等.三层地铁车站振动台试验分析[J].地震工程与工程振动,2011,31(06):159.
 JING Liping,MENG Xianchun,SUN Haifeng,et al.Shaking table test analysis of three-story subway station[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2011,31(03):159.
[7]汪明武,Susumu Iai.地下RC结构物地震响应特征土工离心试验的模拟[J].地震工程与工程振动,2007,27(03):150.
 WANG Mingwu,Susumu Iai.Numerical simulation of centrifuge modeling for seismic responses of underground RC structures[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2007,27(03):150.
[8]刘晶波,刘祥庆,杜修力.地下结构抗震理论分析与试验研究的发展展望[J].地震工程与工程振动,2007,27(06):038.
 LIU Jingbo,LIU Xiangqing,DU Xiuli.Prospects for the development in theoretical analysis and experimental study of seismic response of underground structures[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2007,27(03):038.
[9]景立平,姚运生,郑志华.饱和粉土液化特性的大型振动台模型试验研究[J].地震工程与工程振动,2007,27(06):160.
 JING Liping,YAO Yunsheng,ZHENG Zhihua.Large scale shaking table test study on liquefaction of saturated silty soil[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2007,27(03):160.
[10]李彬,刘晶波,刘祥庆.地铁车站的强地震反应分析及设计地震动参数研究[J].地震工程与工程振动,2008,28(01):017.
 LI Bin,LIU Jingbo,LIU Xiangqing.Study on seismic responses of a subway station and design parameters of ground motions[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2008,28(03):017.

备注/Memo

备注/Memo:
收稿日期:2018-6-4;改回日期:2018-12-3。
基金项目:国家自然科学基金项目(51678360)
作者简介:王文章(1995-),男,硕士研究生,主要从事岩土地震响应方面的研究.E-mail:wenzhang@sjtu.edu.cn
更新日期/Last Update: 1900-01-01