[1]曹邕生,包恩和.BRB水平力分担率对高层屈曲约束支撑钢框架抗震性能影响研究[J].地震工程与工程振动,2019,39(03):195-204.[doi:10.13197/j.eeev.2019.03.195.caoys.020]
 CAO Yongsheng,BAO Enhe.Influence of BRB horizontal force sharing rate on seismic behavior of high-rise buckling restrained braced steel frames[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2019,39(03):195-204.[doi:10.13197/j.eeev.2019.03.195.caoys.020]
点击复制

BRB水平力分担率对高层屈曲约束支撑钢框架抗震性能影响研究
分享到:

《地震工程与工程振动》[ISSN:/CN:]

卷:
39
期数:
2019年03
页码:
195-204
栏目:
论文
出版日期:
2019-06-30

文章信息/Info

Title:
Influence of BRB horizontal force sharing rate on seismic behavior of high-rise buckling restrained braced steel frames
作者:
曹邕生1 包恩和2
1. 广州大学 土木工程学院, 广东 广州 510006;
2. 桂林理工大学 土木与建筑工程学院, 广西 桂林 541004
Author(s):
CAO Yongsheng1 BAO Enhe2
1. College of Civil Engineering, Guangzhou University, Guangzhou 510006, China;
2. College of Civil & Construction Engineering, Guilin University of Technology, Guilin 541004, China
关键词:
屈曲约束支撑BRB水平力分担率抗震性能弹塑性静力分析弹塑性时程分析
Keywords:
buckling restrained braceBRB horizontal force sharing rateseismic behaviorelasto-plastic static analysiselasto-plastic time history analysis
分类号:
TU375.4
DOI:
10.13197/j.eeev.2019.03.195.caoys.020
摘要:
本文按照结构刚度相近、重量相近的思路设计了5组BRB水平力分担率β分别为20%、30%、40%、50%和60%的高层屈曲约束支撑钢框架结构模型,并对模型进行弹塑性静力推覆分析及弹塑性时程分析,研究BRB水平力分担率β对高层屈曲约束支撑钢框架抗震性能的影响。研究结果表明:(1)β=20%的结构,BRB屈服早,承载力较小,滞回耗能效果有限;β=30%~40%的结构,BRB屈服早,承载力较大,滞回耗能性能好;β=50%~60%的结构,BRB承载力大,下部楼层BRB屈服较早,滞回性能好,上部楼层BRB屈服晚,滞回性能差。(2)当结构层间位移角未超过1/50时,层间位移较大区域主要在中间楼层或中低部楼层。当结构层间位移角超过1/50时,高β值结构的下部楼层刚度迅速下降,变形增大明显。(3)罕遇地震下,随着结构β值的升高,结构上部楼层、中间楼层BRB的延性比μ及塑性延性比η会出现不同程度的下降,β值越大,楼层越高,下降越明显,而不同β值的结构下部楼层BRB的μη变幅较小。(4)对于高层BRB钢框架结构,工程中建议将BRB的水平率分担率β设计为30%~40%。
Abstract:
In order to study the influence of BRB horizontal force sharing rate on the seismic behavior of high-rise buckling restrained braced steel frames, five high rise buckling restrained braced steel frames with BRB horizontal force sharing ratio β of 20%, 30%, 40%, 50% and 60%, respectively, are designed in accordance with the idea of similar stiffness and close weight of each structure. And elasto-plastic static analysis and time history analysis were performed on the model. The results of the study show that:First, The BRB with β of 20% installed in structures has smaller bearing capacity and limited energy dissipation effect. The BRB with β of 30% to 40% installed in structures has larger bearing capacity and well performance of hysteretic energy dissipation. The BRB with β of 50% to 60% installed in structures has large bearing capacity, and the BRB installed in lower stories yield earlier, but has better performance of hysteretic energy dissipation compared to the BRB installed in taller stories. Second, when the inter-story displacement angle of the structure is less than 1/50, the larger inter-story displacement is mainly in the middle or low-middle story. When the inter-story displacement angle of the structure is more than 1/50, stiffness decreases rapidly and deformation increases rapidly at low-rise of the structure with big value ofβ. Third, under infrequent earthquake, with the increase of β of the structure, the ductility ratio μ and the accumulated plastic ductility ratio η of BRB in the high rise and middle rise of the structures will decrease in varying degrees. The higher the β and the higher the floor, the more apparent the decrease is. And there is little variation of μ and η of BRB installed in lower stories with the bigger value of β and the higher height. Fourth, it is suggested that the horizontal force sharing ratio β is designed to be 30%-40% for high-rise BRB steel frame structure.

参考文献/References:

[1] 张小连. 高层建筑钢结构体系中竖向荷载的P-Δ效应研究[D].杭州:浙江大学,2011. ZHANG Xiaolian. Studies on the P-Δ effect of the vertical loads on high-rise steel structures[D]. Hangzhou:Zhejiang University, 2011.(in Chinese)
[2] Architectural Institute of Japan. Recommended provisions for seismic damping systems applied to steel structures[M]. Tokyo:Maruzen-publishing CO.,LTD,2015.
[3] A Seismic Provision for Structural Steel Buildings[S]. California:American Institute of Steel Construction Inc. 2002.
[4] Choi H, Kim J, Chung L. Seismic design of bucking restrained braced frames based on a modified energy-balance concept[J]. Canadian Journal of Civil Engineering, 2006,33(10):1251-1260.
[5] Choi H, Kim J. Energy-based seismic design of bucking restrained braced frames using hysteretic energy spectrum[J]. Engineering Structures, 2006,28(2):304-311.
[6] JGJ 297-2013消能减震技术规程[S]. 北京:中国建筑工业出版社, 2013. JGJ 297-2013 Technical Specification for Seismic Energy Dissipation of Buildings[S]. Beijing:China Architecture & Building Press, 2013.(in Chinese)
[7] 孙爱伏,欧进萍. 高层钢结构抗震pushover分析的侧向力分布模式及其影响[J]. 地震工程与工程振动,2008, 28(4):88-93. SUN Aifu, OU Jinping. Lateral action patterns and their effects on pushover[J]. Earthquake Engineering and Engineering Dynamics, 2008, 28(4):88-93.(in Chinese)
[8] Ogawa K, Tada M. Combined non-linear analysis for plane frame ("clap")[C]//Architectural Institute of Japan. Proc. of 17th Symposium on Computer Technology on Information Systems and Applications. Tokyo:Showa intelligence Press,1994:79-84.
[9] GB50011-2010建筑抗震设计规范[S]. 北京:中国建筑工业出版社, 2010. GB50011-2010 Code for Seismic Design of Buildings[S]. Beijing:Building Industry Press of China, 2010. (in Chinese)
[10] Akkar S, Ozen O. Effect of peak ground velocity on deformation demands for SDOF systems[J]. Earthquake Engineering and Structure Dynamics.2005.34:1551-1571.
[11] 叶列平,马千里,缪志伟. 结构抗震分析用地震动强度指标的研究[J]. 地震工程与工程振动,2009,29(4):9-22. YE Lieping, MA Qianli, LIAO Zhiwei. Study on earthquake intensities for seismic analysis of structures[J]. Earthquake Engineering and Engineering Dynamics, 2009,29(4):9-22. (in Chinese)
[12] 建築構造設計指針[S]. 文部科学省大臣官房文教施設企画部, 2014. Recommendations for Design of Buildings[S]. Ministry of Education, Culture, Sports, Science and Technology, 2014. (in Japanese)

相似文献/References:

[1]李国强,胡宝琳.屈曲约束支撑滞回曲线模型和刚度方程的建立[J].地震工程与工程振动,2007,27(02):026.
 LI Guoqiang,HU Baolin.Establishing of hysteresis curve model and stiffness formula for buckling-restrained brace[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2007,27(03):026.
[2]李国强,胡大柱,孙飞飞,等.屈曲约束支撑半刚性连接框架弹塑性地震位移简化计算[J].地震工程与工程振动,2009,29(04):033.
 LI Guoqian,HU Dazhu,SUN Feifei,et al.A simplified method for determining elasto-plastic drift of buckling restrained braced frame with semi-rigid connections[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2009,29(03):033.
[3]谢强,赵亮.屈曲约束支撑的研究进展及其在结构抗震加固中的应用[J].地震工程与工程振动,2006,26(03):100.
 Xie Qiang,Zhao Liang.Research on buckling-restrained brace and its applications to structural seismic retrofitting[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2006,26(03):100.
[4]贾斌,罗晓群,丁娟,等.全钢防屈曲耗能支撑对空间桁架结构减震控制研究[J].地震工程与工程振动,2014,34(03):165.[doi:10.13197/j.eeev.2014.03.165.jiab.022]
 JIA Bin,LUO Xiaoqun,DING Juan,et al.Study on vibration reduction of spacial truss structure with all-steel buckling restraining braces[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2014,34(03):165.[doi:10.13197/j.eeev.2014.03.165.jiab.022]
[5]周云,林绍明.伸臂层处剪力墙的受力与变形研究[J].地震工程与工程振动,2014,34(05):108.[doi:10.13197/j.eeev.2014.05.108.zhouy.015]
 ZHOU Yun,LIN Shaoming.Study on force and deformation of shear wall at outrigger[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2014,34(03):108.[doi:10.13197/j.eeev.2014.05.108.zhouy.015]
[6]赵昕,张鸿玮.超高层建筑屈曲约束支撑生命周期经济成本评估[J].地震工程与工程振动,2016,36(01):127.[doi:10.13197/j.eeev.2016.01.127.zhaox.016]
 ZHAO Xin,ZHANG Hongwei.Life cycle cost assessment for buckling-restrained braced in super tall buildings[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2016,36(03):127.[doi:10.13197/j.eeev.2016.01.127.zhaox.016]

备注/Memo

备注/Memo:
收稿日期:2018-10-10;改回日期:2018-12-6。
基金项目:广州大学研究生创新研究资助计划(2018GDJC-D15)
作者简介:曹邕生(1991-),男,博士研究生,主要从事钢结构及消能减震研究.E-mail:396370356@qq.com
通讯作者:包恩和(1975-),男,副教授,主要从事钢结构及消能减震研究.E-mail:864476103@qq.com
更新日期/Last Update: 1900-01-01