[1]黄斌,吕泓旺,宋阳,等.基于改进的多段线性本构模型的超弹性SMA螺旋弹簧力-位移关系研究[J].地震工程与工程振动,2019,39(04):008-21.[doi:10.13197/j.eeev.2019.04.8.huangb.002]
 HUANG Bin,LV Hongwang,SONG Yang,et al.Study on force-displacement relationship of superelastic SMA helical springs based on modified multilinear constitutive model[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2019,39(04):008-21.[doi:10.13197/j.eeev.2019.04.8.huangb.002]
点击复制

基于改进的多段线性本构模型的超弹性SMA螺旋弹簧力-位移关系研究
分享到:

《地震工程与工程振动》[ISSN:/CN:]

卷:
39
期数:
2019年04
页码:
008-21
栏目:
论文
出版日期:
2019-09-30

文章信息/Info

Title:
Study on force-displacement relationship of superelastic SMA helical springs based on modified multilinear constitutive model
作者:
黄斌 吕泓旺 宋阳 吴羿兴
武汉理工大学 土木工程与建筑学院, 湖北 武汉 430070
Author(s):
HUANG Bin LV Hongwang SONG Yang WU Yixing
School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
关键词:
SMA螺旋弹簧超弹性本构模型力-位移关系拉伸试验
Keywords:
SMA helical springsuperelasticityconstitutive modelforce-displacement relationshiptension test
分类号:
TB381
DOI:
10.13197/j.eeev.2019.04.8.huangb.002
摘要:
提出了一种改进的多段线性形状记忆合金(SMA)本构模型,在此基础上,结合螺旋弹簧的基本力学性能,给出了复杂荷载下超弹性SMA螺旋弹簧力-位移关系模型的数值仿真方法。对Motahari提出的SMA多段线性本构模型进行了改进,给出了子环曲线弹性模量的定义,使子环的模拟更加逼近试验结果。同时,考虑到SMA螺旋弹簧的轴向大变形,将原来的一维模型推广到兼顾截面扭转和弯曲两种效应的二维模型。通过两种NiTi螺旋弹簧试件在多种荷载工况下的拉伸试验,对所建立的力-位移关系仿真模型进行了验证。仿真与试验结果表明,应用建立的超弹性SMA螺旋弹簧力-位移关系模型能较为准确地模拟复杂加载工况下弹簧的力学行为。和Motahari模型相比,本文提出的力-位移模型更接近试验结果。
Abstract:
This paper proposes a new multilinear constitutive model of shape memory alloy (SMA). Based on this model and basic mechanical properties of helical spring, a new numerical method is presented to simulate the force-displacement relationship of superelastic SMA helical springs under complicated load. In the new model, the elastic modulus of the subloop is redefined to fit the experimental results to modify the Motahari constitutive model. Furthermore, the simulated force-displacement relationship of the springs considers the impact of not only the torque but also the moment on the cross sections of the SMA wires. Through the tension tests of two NiTi helical spring specimens under various load cases, the simulated model of the force-displacement relationship is verified. The comparison between the numerical simulations and experimental results shows that the force-displacement relationships of the SMA springs by the proposed method can agree with the correponding experimental results very well. The force-displacement curves of SMA springs obtained by the proposed model approach the experimental curves better than those by the Motahari model.

参考文献/References:

[1] HARTL D J, LAGOUDAS, D C. Aerospace applications of shape memory alloys[J]. Proceedings of the Institution of Mechanical Engineers Part G, 2007, 221(4), 535-552.
[2] BUNDHOO V, HASLAM E, BIRCH B, et al. A shape memory alloy-based tendon-driven actuation system for biomimetic artificial fingers, part I:design and evaluation[J]. Robotica, 2009, 27(1):131-146.
[3] JANI J M, LEARY M, SUBIC A, et al. A review of shape memory alloy research, applications and opportunities[J]. Materials and Design. 2014, 56(4), 1078-1113.
[4] 李惠, 毛晨曦.新型SMA耗能器及结构地震反应控制试验研究[J].地震工程与工程振动, 2003, 23(1):133-139. LI Hui, MAO Chenxi. Experimental investigation of earthquake response reduction of buildings with added two types of SMA passive energy dissipation devices[J]. Earthquake Engineering and Engineering Dynamics, 2003, 23(1):133-139. (in Chinese)
[5] 崔迪, 李宏男, 宋钢兵.形状记忆合金在土木工程中的研究与应用进展[J].防灾减灾工程学报, 2005, 25(1):86-94. CUI Di, LI Hongnan, SONG Gangbing. Research and application of shape memory alloy in civil engineering[J]. Journal of Disaster Prevention and Mitigation Engineering, 2005, 25(1):86-94.(in Chinese)
[6] OZBULUT O E, HURLEBAUS S, DESROCHES R. Seismic response control using shape memory alloys:a review[J]. Journal of Intelligent Material Systems and Structures, 2011, 22(14), 1531-1549.
[7] 任文杰, 李宏男, 宋钢兵,等.新型自复位SMA阻尼器对框架结构减震控制的研究[J].土木工程学报, 2013, 46(6):14-20. REN Wenjie, LI Hongnan, SONG Gangbing, et al. Study on seismic response control of frame structure using innovative re-centring SMA damper[J]. China Civil Engineering Journal, 2013, 46(6):14-20. (in Chinese)
[8] QIU C, ZHU S. Shake table test and numerical study of self-centering steel frame with SMA braces[J]. Earthquake Engineering and Structural Dynamics, 2017, 46(1), 117-137.
[9] SPEICHER M, HODGSON D E, DESROCHES R, et al. Shape memory alloy tension/compression device for seismic retrofit of buildings[J]. Journal of Materials Engineering and Performance, 2009, 18(5-6):746-753.
[10] Attanasi G, Auricchio F.Innovative superelastic isolation device[J].Journal of Earthquake Engineering, 2011, 15(S1):72-89.
[11] 黄斌, 蒲武川, 张海洋, 等.基于超弹性SMA螺旋弹簧的基础隔震研究[J].地震工程与工程振动, 2014, 34(2):209-215. HUANG Bin, PU Wuchuan, ZHANG Haiyang, et al. Study on seismic responses of base isolated structures with superelastic SMA helical springs[J].Earthquake Engineering and Engineering Dynamics, 2014, 34(2):209-215. (in Chinese)
[12] 庄鹏, 薛素铎, 韩淼, 等.SMA弹簧-摩擦支座的滞回性能研究[J].振动与冲击, 2016, 35(9):94-100. ZHUANG Peng, XUE Suduo, HAN Miao, et al. Hysteretic performance of a SMA spring-friction bearing[J]. Journal of Vibration and Shock, 2016, 35(9):94-100. (in Chinese)
[13] TOBUSHI H, TANAKA K. Deformation of a shape memory alloy helical spring:analysis based on stress-strain-temperature relation[J]. Transactions of the Japan Society of Mechanical Engineers A, 1991, 56(1):140-145.
[14] TANAKA K. A Thermomechanical sketch of shape memory effect:one-dimensional tensile behavior[J]. Res Mechanica, 1986, 18(3):251-263.
[15] 李晋芳, 任勇生.形状记忆合金超弹性弹簧的设计[J].太原理工大学学报, 1999, 30(4):410-412. LI Jinfang, REN Yongsheng. Design method for shape memory alloy springs with superelasticity[J]. Journal of Taiyuan University of Technology, 1999, 30(4):410-412. (in Chinese)
[16] LIANG C, ROGERS C A. Design of Shape memory alloy springs with applications in vibration control[J]. Journal of Vibration and Acoustics, 1993, 115(1):129-135.
[17] TOI Y, LEE J B, TAYA M. Finite element analysis of superelastic, large deformation behavior of shape memory alloy helical springs[J]. Computers and Structures, 2004, 82(20/21):1685-1693.
[18] BRINSON L C.One-dimensional constitutive behavior of shape memory alloys:thermomechanical derivation with non-constant material functions and redefined martensite internal variable[J].Journal of Intelligent Material Systems and Structures, 1993, 4(2):229-242.
[19] 宋固全, 徐玉红, 吴晓钢.形状记忆合金弹簧力学性能分析[J].南昌大学学报:工科版, 2005, 27(2):1-5. SONG Guquan, XU Yuhong, WU Xiaogang. Analysis of mechanical performance of shape memory alloy springs[J].Journal of Nanchang University:Engineering & Technology, 2005, 27(2):1-5. (in Chinese)
[20] LIN P H, TOBUSHI H, TANAKA K, et al. Pseudoelastic behaviour of tiNi shape memory alloy subjected to strain variations[J]. Journal of Intelligent Material Systems and Structures, 1994, 5(5):694-701.
[21] AGUIAR R A A, SAVI M A, PACHECO P M C L. Experimental and numerical investigations of shape memory alloy helical springs[J]. Smart Materials and Structures, 2010, 19(19):025008.
[22] PAIVA A, SAVI M A, BRAGA A M B, et al. A constitutive model for shape memory alloys considering tensile-compressive asymmetry and plasticity[J]. International Journal of Solids and Structures, 2005, 42(11):3439-3457.
[23] MIRZAEIFAR R, DESROCHES R, YAVARI A. A combined analytical, numerical, and experimental study of shape-memory-alloy helical springs[J]. International Journal of Solids and Structures, 2011, 48(3-4):611-624.
[24] MIRZAEIFAR R, SHAKERI M, SADIGHI M. Nonlinear finite element formulation for analyzing shape memory alloy cylindrical panels[J]. Smart Materials and Structures, 2009, 18(3):035002.
[25] MIRZAEIFAR R, DESROCHES R, YAVARI A. Exact solutions for pure torsion of shape memory alloy circular bars[J]. Mechanics of Materials, 2010, 42(8):797-806.
[26] ENEMARK S, SAVI M A, SANTOS I F. Nonlinear dynamics of a pseudoelastic shape memory alloy system-theory and experiment[J]. Smart Materials and Structures, 2014, 23(8):085018.
[27] SAVI M A, PACHECO P M C L, GARCIA M S, et al. Nonlinear geometric influence on the mechanical behavior of shape memory alloy helical springs[J]. Smart Materials and Structures, 2015, 24(3):035012.
[28] AURICCHIO F, TAYLOR R L, LUBLINER J. Shape-memory alloys:macromodelling and numerical simulations of the superelastic behavior[J].Computer Methods in Applied Mechanics and Engineering, 1997, 146(3/4):281-312.
[29] MEHRABI R, RAVARI M R K. Simulation of superelastic SMA helical springs[J]. Smart Structures and Systems, 2015, 16(1):183-194.
[30] MEHRABI R, KADKHODAEI M, ELAHINIA M. A thermodynamically-consistent microplane model for shape memory alloys[J]. International Journal of Solids and Structures, 2014, 51(14):2666-2675.
[31] MOTAHARI S A, GHASSEMIEH M. Multilinear one-dimensional shape memory material model for use in structural engineering applications[J]. Engineering Structures, 2007, 29(6):904-913.
[32] HUANG B, LAO Y M, CHEN J M, et al. Dynamic response analysis of a frame structure with superelastic nitinol SMA helical spring braces for vibration reduction[J]. Journal of Aerospace Engineering, 2018, 31(6):04018096.
[33] DORAISWAMY S, RAO A, SRINIVASA A R. Combining thermodynamic principles with Preisach models for superelastic shape memory alloy wires[J]. Smart Materials and Structures, 2011, 20(8):085032.
[34] HEINTZE O, SEELECKE S. A coupled thermomechanical model for shape memory alloys-From single crystal to polycrystal[J]. Materials Science and Engineering A, 2008, 481-482:389-394.
[35] ORTIN J. Preisach modeling of hysteresis for a pseudoelastic Cu-Zn-Al single crystal[J]. Journal of Applied Physics, 1992, 71(3):1454-1461.
[36] SITNIKOVA E, PAVLOVSKAIA E, Ing J, et al. Suppressing nonlinear resonances in an impact oscillator using SMAs[J].Smart Materials and Structures, 2012, 21(7):075028.
[37] MANACH P Y, FAVIER D. Shear and tensile thermomechanical behavior of near equiatomic NiTi alloy[J]. Materials Science and Engineering A, 1997, 222(1):45-57.
[38] ZHOU X, YOU Z. Theoretical analysis of superelastic SMA helical structures subjected to axial and torsional loads[J]. Smart Structures and Systems, 2015, 15(5):1271-1291.
[39] ENEMARK S, SANTOS I F, SAVI M A. Modelling, characterisation and uncertainties of stabilised pseudoelastic shape memory alloy helical springs[J]. Journal of Intelligent Material Systems and Structures, 2016, 27(20):2721-2743.
[40] WAHL A M. Mechanical Springs, 1st ed[M].OH:Penton Publishing Co, 1944.
[41] FOLLADOR M, CIANCHETTI M, ARIENTI A, et al. A general method for the design and fabrication of shape memory alloy active spring actuators[J]. Smart Materials and Structures, 2012, 21(11):115029.
[42] 闫晓军, 张小勇.形状记忆合金智能结构[M].北京:科学出版社, 2015. YAN Xiaojun, ZHANG Xiaoyong. Smart structure of shape memory alloy[M]. Beijing:Science Press, 2015. (in Chinese)

相似文献/References:

[1]庄鹏,薛素铎,韩淼.SMA弹簧-摩擦支座基础隔震体系的地震响应分析[J].地震工程与工程振动,2015,35(02):103.[doi:10.13197/j.eeev.2015.02.103.zhuangp.012]
 ZHUANG Peng,XUE Suduo,HAN Miao.Seismic response analysis of the base isolation system using SMA spring-friction bearing[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2015,35(04):103.[doi:10.13197/j.eeev.2015.02.103.zhuangp.012]

备注/Memo

备注/Memo:
收稿日期:2018-11-20;改回日期:2019-1-5。
基金项目:国家自然科学基金项目(51578431)
作者简介:黄斌(1968-)男,教授,博士,主要从事结构工程,防灾减灾工程研究.E-mail:binhuang@whut.edu.cn
更新日期/Last Update: 1900-01-01