[1]韩建平,张一恒,张鸿宇.基于计算机视觉的振动台试验结构模型位移测量[J].地震工程与工程振动,2019,39(04):022-29.[doi:10.13197/j.eeev.2019.04.22.hanjp.003]
 HAN Jianping,ZHANG Yiheng,ZHANG Hongyu.Displacement measurement of shaking table test structure model based on computer vision[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2019,39(04):022-29.[doi:10.13197/j.eeev.2019.04.22.hanjp.003]
点击复制

基于计算机视觉的振动台试验结构模型位移测量
分享到:

《地震工程与工程振动》[ISSN:/CN:]

卷:
39
期数:
2019年04
页码:
022-29
栏目:
论文
出版日期:
2019-09-30

文章信息/Info

Title:
Displacement measurement of shaking table test structure model based on computer vision
作者:
韩建平12 张一恒12 张鸿宇12
1. 兰州理工大学 甘肃省土木工程防灾减灾重点实验室, 甘肃 兰州 730050;
2. 兰州理工大学 防震减灾研究所, 甘肃 兰州 730050
Author(s):
HAN Jianping12 ZHANG Yiheng12 ZHANG Hongyu12
1. Key Laboratory of Disaster Prevention and Mitigation in Civil Engineering of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, China;
2. Institute of Earthquake Protection and Disaster Mitigation, Lanzhou University of Technology, Lanzhou 730050, China
关键词:
计算机视觉方法非接触测量图像处理大型振动台试验模态参数识别
Keywords:
computer vision methodnon-contact measurementimage processinglarge shaking table testmodal parameter identification
分类号:
TU352.1
DOI:
10.13197/j.eeev.2019.04.22.hanjp.003
摘要:
传统的位移传感器受成本、量程、采样频率限制,且现场安装繁琐,因此有必要发展非接触技术,如基于计算机视觉的位移测量等。本文通过计算机视觉方法,借助MATLAB编写一套非接触式的位移测量程序,在四层钢筋混凝土框架-填充墙结构模型的振动台试验中进行楼层位移测量。与拉线式位移传感器测量结果相比,基于视觉方法得到的结果误差较小,相关系数及方差计算结果表明视觉方法的测量结果是可接受的。进一步,利用视觉方法测得的位移响应,采用特征系统实现算法识别结构模型的模态参数,获得模态频率、模态阻尼比等参数,并与基于加速度传感器记录的识别结果进行了对比。对比结果表明,通过视觉测量获得的位移响应可以较好地识别结构的模态参数。因此,使用单个相机即可有效代替大量传统的接触式传感器实现对结构的整体测量。
Abstract:
There are several limitations of the traditional displacement sensing technologies, such as high cost, limited measuring range and sampling frequency. And they are not convenient to be installed in the field. So it is necessary to develop non-contact sensing technology for dynamic responses of structures, such as displacement measurement based on computer vision. In this paper, computer vision was adopted and a non-contact displacement measurement program was developed via MATLAB. Then the program was used to measure the displacement of a reinforced concrete frame structure model with infill walls during large scale shaking table test. By comparing with the results from Linear Variable Differential Transformers (LVDTs), the error of the measured floor displacement from computer vision method is small, and correlation coefficients and variance indicate that the measured displacement results are acceptable. Then, the measured displacement by computer vision method were used to identify the modal parameters of the model structure by Eigensystem Realization Algorithm (ERA), such as modal frequencies and modal damping ratios. Comparison with the identification results based on the accelerometer records shows that the modal parameters can be identified well based on the measured results by computer vision. Therefore, the use of a single camera can effectively replace a large number of traditional contact sensors to complete the overall measurement of the structure.

参考文献/References:

[1] Fukuda Y, Feng M Q, Shinozuka M. Cost-effective vision-based system for monitoring dynamic response of civil engineering structures[J]. Structural Control and Health Monitoring, 2010, 17(8):918-936.
[2] Fukuda Y, Feng M Q, Narita Y, et al. Vision-based displacement sensor for monitoring dynamic response using robust object search algorithm[J]. IEEE Sensors Journal, 2013, 13(12):4725-4732.
[3] Ribeiro D, Cal?ada R, Ferreira J, et al. Non-contact measurement of the dynamic displacement of railway bridges using an advanced video-based system[J]. Engineering Structures, 2014, 75(75):164-180.
[4] Feng D, Feng M Q, Ozer E, et al. Avision-based sensor for noncontact structural displacement measurement[J]. Sensors, 2015, 15(7):16557-16575.
[5] Carmelo Gentile, Giulia Bernardini. An interferometric radar for non-contact measurement of deflections on civil engineering structures:laboratory and full-scale tests[J]. Structure & Infrastructure Engineering, 2010, 6(5):521-534.
[6] Nassif H H, Gindy M, Davis J. Comparison of laser Doppler vibrometer with contact sensors for monitoring bridge deflection and vibration[J]. NDT & E International, 2005, 38(3):213-218.
[7] Xu Y, Brownjohn J M W. Review of machine-vision based methodologies for displacement measurement in civil structures[J].Journal of Civil Structural Health Monitoring, 2018, 8(1):91-110.
[8] Feng D, Feng M Q. Computer vision for SHM of civil infrastructure:From dynamic response measurement to damage detection-A review[J].Engineering Structure, 2018, 156:105-117.
[9] 单宝华, 申宇. 基于立体视觉的砌体房屋模型振动试验研究[J]. 地震工程与工程振动, 2013, 33(3):103-109. SHAN Baohua, SHEN Yu. Research on vibration testing of a masonry building model based on stereovision[J]. Earthquake Engineering And Engineering Dynamic, 2013, 33(3):103-109. (in Chinese)
[10] Feng D, Feng M Q. Experimental validation of cost-effective vision-based structural health monitoring[J]. Mechanical Systems & Signal Processing, 2017, 88:199-211.
[11] 周颖, 张立迅, 刘彤, 等. 基于计算机视觉的结构系统识别[J]. 土木工程学报, 2018, 51(11):17-23. ZHOU Ying, ZHANG Lixun, LIU Tong, et al. Computer vision-based structural system identification[J]. China Civil Engineering Journal, 2018, 51(11):17-23. (in Chinese)
[12] Khuc T. Computer vision based structural identification framework for bridge health monitoring[D]. Florida:University of Central Florida, 2016.
[13] Gonzalez R C, Woods R E, Eddins S L. 数字图像处理的MATLAB实现[M]. 2版. 阮秋琦, 译. 北京:清华大学出版社, 2013. Gonzalez R C, Woods R E, Eddins S L. Digital Image Processing Using MATLAB[M]. 2nd ed. Ruan Qiuqi, translated. Beijing:Tsinghua University Press, 2013. (in Chinese)

备注/Memo

备注/Memo:
收稿日期:2019-2-1;改回日期:2019-5-7。
基金项目:国家自然科学基金项目(51578273);教育部长江学者和创新团队发展计划(IRT_17R51)
作者简介:韩建平(1970-),男,教授,博士,主要从事结构抗震与减震控制、结构健康监测与损伤诊断研究.E-mail:jphan@lut.edu.cn
更新日期/Last Update: 1900-01-01