[1]王伟,孙国华,刘文渊,等.自复位中心支撑钢框架结构弹塑性状态的层剪力分布研究[J].地震工程与工程振动,2019,39(04):148-161.[doi:10.13197/j.eeev.2019.04.148.wangw.015]
 WANG Wei,SUN Guohua,LIU Wenyuan,et al.Seismic shear distribution of self-centering centrically braced steel frames in elasto-plastic state[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2019,39(04):148-161.[doi:10.13197/j.eeev.2019.04.148.wangw.015]
点击复制

自复位中心支撑钢框架结构弹塑性状态的层剪力分布研究
分享到:

《地震工程与工程振动》[ISSN:/CN:]

卷:
39
期数:
2019年04
页码:
148-161
栏目:
论文
出版日期:
2019-09-30

文章信息/Info

Title:
Seismic shear distribution of self-centering centrically braced steel frames in elasto-plastic state
作者:
王伟1 孙国华1 刘文渊2 刘撼1
1. 苏州科技大学 土木工程学院, 江苏 苏州 215011;
2. 南京理工大学 泰州科技学院城市建设与设计学院, 江苏 泰州 215011
Author(s):
WANG Wei1 SUN Guohua1 LIU Wenyuan2 LIU Han1
1. School of Civil Engineering, Suzhou University of Science and Technology, Suzhou 215011, China;
2. School of Urban Construction and Design, Taizhou Institute of Science and Technology NUST, Taizhou 215011, China
关键词:
自复位中心支撑钢框架弹塑性层剪力分布近场远场
Keywords:
self-centering centrically braced steel frameelasto-plastic statestory lateral shear distributionnear-faultfar-fault
分类号:
TU391
DOI:
10.13197/j.eeev.2019.04.148.wangw.015
摘要:
为研究自复位中心支撑钢框架结构(Self-centering concentrically braced steel frame,简称SC-CBF)在罕遇地震作用下的弹塑性层剪力分布,基于现行抗震规范设计了5个具有理想失效模式的自复位中心支撑钢框架结构,考虑层数、烈度、近场地震速度脉冲效应和远场地震加速度循环效应的影响,采用动力弹塑性时程方法研究了SC-CBF结构在罕遇地震水准下的响应,提出了与我国抗震规范一致的弹塑性层剪力分布模式,并同已有的层剪力分布模式进行了对比。分析结果表明本文建议的层剪力分布模式与Chao&Geol建议的层剪力分布模式、孙国华等建议的层剪力分布模式相近,与弹塑性时程分析结果相比误差最小,可为完善自复位中心支撑钢框架结构基于能量的抗震设计方法提供参考。
Abstract:
In order to investigate the story shear distribution of innovative self-centering centrically braced steel frame (SC-CBF) at rare earthquake level, a total of five SC-CBF illustrations with desirable failure mode were designed based on the current seismic code. The relative influencing factors, including storey number, seismic intensity, and earthquake wave features, were considered. The nonlinear time history analysis method was adopted to analyze the seismic response of SC-CBF structure subjected to rare earthquake, and the elasto-plastic seismic shear distribution mode consistent with current seismic code was proposed, which also compared with previous storey seismic shear distribution modes. The analytical results show that the proposed seismic shear distribution mode is similar with the storey seismic shear distribution modes proposed by Chao & Goel and Sun, and the error is small with the analytical results of nonlinear time history method. The proposed seismic shear distribution mode can provide some useful references for the energy design method of SC-CBF structure.

参考文献/References:

[1] 刘撼. 新型自复位钢支撑的滞回性能研究[D]. 苏州:苏州科技大学, 2017. LIU Han. Research on hysteretic behavior of an innovative self-centering steel brace[D]. Suzhou:Suzhou University of Science and Technology, 2017.(in Chinese)
[2] Lee S S. Performance-based design of steel moment frames using target drift and yield mechanism[D]. Ann Arbor:University of Michigan College of Engineering, 2002.
[3] Chao S H, Goel S C, Lee S S. A seismic design lateral force distribution based on inelastic state of structures[J]. Earthquake Spectra, 2007, 23(3):547-569.
[4] 拾宝童, 顾强. 钢框架-钢板剪力墙用于抗震设计的层间剪力分布[J]. 苏州科技学院学报:工程技术版, 2011, 24(1):45-49. SHI Baotong, GU Qiang. The storey shear distribution of steel frame-steel plate shear wall for seismic design[J]. Journal of Suzhou University of Science and Technology:Engineering and Technology, 2011, 24(1):45-49.(in Chinese)
[5] 孙国华, 顾强, 何若全, 等. 钢框架-钢板剪力墙结构弹塑性状态的层剪力分布研究[J]. 工程力学, 2013, 30(7):113-121. SUN Guohua, GU Qiang, HE Ruoquan, et al. Distribution of horizontal seismic shear based on inelastic state of steel plate shear walls[J] Engineering Mechanics, 2013, 30(7):113-121.(in Chinese)
[6] 王炳监, 顾强. 人字形中心支撑钢框架近场地震下层剪力分布[J]. 苏州科技学院学报:工程技术版, 2014, 27(4):18-23. WANG Bingjian, GU Qiang. The storey shear distribution in chevron braced steel frames under near-fault earthquake[J]. Journal of Suzhou University of Science and Technology:Engineering and Technology, 2014, 27(4):18-23.(in Chinese)
[7] 顾鑫全, 顾强. 近场强震下单斜式中心支撑钢框架层剪力分布[J]. 苏州科技学院学报:工程技术版, 2015, 28(1):45-49. GU Xinquan, GU Qiang. The storey shear distribution in diagonal lined-CBSF subjected to near-fault ground motions[J]. Journal of Suzhou University of Science and Technology:Engineering and Technology, 2015, 28(1):45-49.(in Chinese)
[8] 任丹丹, 顾强. V形偏心支撑钢框架近场地震下层剪力分布[J]. 建筑钢结构进展, 2015, 17(2):29-35. REN Dandan, GU Qiang. The storey shear distribution in V-shaped eccentrically braced steel frames under near-fault earthquakes[J]. Progress in Steel Building Structures, 2015, 17(2):29-35.(in Chinese)
[9] 潘戈, 顾强. 强震下K型偏心支撑钢框架的层剪力分布[J]. 苏州科技学院学报:工程技术版, 2015, 28(2):22-36. PAN Ge, GU Qiang. The storey shear distribution in K-shaped EBFs under strong ground motions[J]. Journal of Suzhou University of Science and Technology:Engineering and Technology, 2015, 28(2):22-36.(in Chinese)
[10] 李慎, 连鸣, 苏明周. 高强钢组合K形偏心支撑钢框架弹塑性状态的层剪力分布研究[J]. 工程力学, 2016, 3(12):167-175, 224. LI Shen, LIAN Ming, SU Mingzhou. Seismic shear of K-type eccentrically braced steel frames with high strength steel in elasto-plastic state[J]. Engineering Mechanics, 2016, 33(12):167-175, 224.(in Chinese)
[11] 连鸣, 苏明周, 李慎. Y形高强钢组合偏心支撑框架结构弹塑性层剪力分布研究[J]. 建筑结构学报, 2016, 37(11):86-96. LIAN Ming, SU Mingzhou, LI Shen. Elasto-plastic story shear distribution of Y-type high strength steel composite eccentrically braced frame[J]. Journal of Building Structures, 2016, 37(11):86-96.(in Chinese)
[12] 连鸣, 苏明周, 郭艳. Y形高强钢组合偏心支撑框架结构在近场地震下的弹塑性侧向力分布研究[J]. 地震工程与工程振动, 2017, 37(1):165-173. LIAN Ming, SU Mingzhou, GUO Yan. Lateral force distribution based on inelastic state of Y-type high strength steel composite eccentrically braced frame during near-fault earthquakes[J]. Earthquake Engineering and Engineering Dynamics, 2017, 37(1):165-173.(in Chinese)
[13] GB 50011-2010建筑抗震设计规范[S]. 北京:中国建筑工业出版社, 2010. GB 50011-2010 Code for Seismic Design of Buildings[S]. Beijing:China Architecture & Building Press, 2016.(in Chinese)
[14] GB 50017-2003钢结构设计规范[S]. 北京:中国建筑工业出版社, 2003. GB 50017-2003 Code for Design of Steel Structures[S]. Beijing:China Architecture & Building Press, 2016.(in Chinese)
[15] Omori T, Ando K, Okano M. Superelastic effect in polycrystalline ferrous alloys[J]. Science, 2010, 333(6038):68-71.
[16] Eatherton M R, Hajjar J F. Residual drifts of self-centering systems including effects of ambient building resistance[J]. Earthquake Spectra, 2011, 27(3):719-744.
[17] Federal Emergency Management Agency, FEMA695. Quantification of building seismic performance factors[R]. California, US:Federal Emergency Management Agency, 2009.

相似文献/References:

[1]方明霁,李国强.基于多弹簧模型的钢框架结构三维弹塑性地震反应分析[J].地震工程与工程振动,2007,27(03):022.
 FANG Mingji,LI Guoqiang.3-D plastic dynamic analysis of steel frames based on multi-spring model[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2007,27(04):022.
[2]张鹏,周德源.多层框架结构弹性和弹塑性动力响应比较分析[J].地震工程与工程振动,2007,27(05):040.
 ZHANG Peng,ZHOU Deyuan.Analysis of elastic and elastoplastic dynamic responses of a multi-story frame[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2007,27(04):040.
[3]蔡健,周靖,方小丹.梁铰型屈服RC框架结构地震弹塑性位移增大系数研究[J].地震工程与工程振动,2007,27(05):048.
 CAI Jian,ZHOU Jing,FANG Xiaodan.Seismic inelastic displacement amplification factor for beam-hinge mechanism RC frame[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2007,27(04):048.
[4]吴晓涵,原中晋,吕西林.上海浦东国际机场T2航站楼弹塑性时程分析[J].地震工程与工程振动,2008,28(04):070.
 WU Xiaohan,YUAN Zhongjin,LÜ,et al.Elasto-plastic time history analysis of T2 building of Shanghai Pudong International Airport[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2008,28(04):070.
[5]郑越,陈兴冲.考虑基础提离与塑性的桥墩地震反应[J].地震工程与工程振动,2009,29(04):125.
 ZHENG Yue,CHEN Xingchong.Seismic response of double-column bridge piers considering uplift and yield of foundation[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2009,29(04):125.
[6]刘立平,李英民,韩军,等.桩-土动力相互作用对桩基变形特性和受力性能的影响[J].地震工程与工程振动,2006,26(03):235.
 Liu Liping,Li Yingmin,Han Jun,et al.Influence of soil-structure dynamic interaction on seismic responses of piles[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2006,26(04):235.
[7]张宏祥,张伟.滩海桶形基础承载力三维弹塑性有限元仿真[J].地震工程与工程振动,2006,26(04):127.
 Zhang Hongxiang,Zhang Wei.Three-dimensional elastoplastic FEM simulation of bearing force of bucket foudation in shallow water[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2006,26(04):127.
[8]郝明辉,王珊,张郁山.峰值速度对单自由度体系地震反应的影响分析[J].地震工程与工程振动,2016,36(06):120.[doi:10.13197/j.eeev.2016.06.120.haomh.015]
 HAO Minghui,WANG Shan,ZHANG Yushan.Influence of ground-motion peak velocity on non-linear dynamic response of single-degree-of-freedom system[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2016,36(04):120.[doi:10.13197/j.eeev.2016.06.120.haomh.015]
[9]连鸣,苏明周,郭艳.Y形高强钢组合偏心支撑框架结构在近场地震下的弹塑性侧向力分布研究[J].地震工程与工程振动,2017,37(01):165.[doi:10.13197/j.eeev.2017.01.165.lianm.021]
 LIAN Ming,SU Mingzhou,GUO Yan.Lateral force distribution based on inelastic state of Y-type high strength steel composite eccentrically braced frame during near-fault earthquakes[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2017,37(04):165.[doi:10.13197/j.eeev.2017.01.165.lianm.021]
[10]尚守平,乔勇.钢筋沥青隔震层弹塑性设计研究[J].地震工程与工程振动,2019,39(01):035.[doi:10.13197/j.eeev.2019.01.35.shangsp.005]
 SHANG Shouping,QIAO Yong.Research on elastoplastic design of the steel-asphalt isolation layer[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2019,39(04):035.[doi:10.13197/j.eeev.2019.01.35.shangsp.005]

备注/Memo

备注/Memo:
收稿日期:2019-1-22;改回日期:2019-4-20。
基金项目:国家自然科学基金项目(51578355);江苏省自然科学基金项目(BK20151200,BK20161369);江苏省"青蓝工程"中青年学术带头人资助项目;江苏省研究生科研与实践创新项目(SJLX16_0562)
作者简介:王伟(1981-),男,硕士研究生,主要从事钢-混凝土组合结构抗震研究.E-mail:nkwangwwei3748@163.com
通讯作者:孙国华(1978-),男,教授,博士,主要从事钢结构及
更新日期/Last Update: 1900-01-01