[1]吴文朋,彭巧威,龙士国,等.支座布置对不等高墩曲线桥梁抗震性能的影响分析[J].地震工程与工程振动,2019,39(04):227-235.[doi:10.13197/j.eeev.2019.04.227.wuwp.024]
 WU Wenpeng,PENG Qiaowei,LONG Shiguo,et al.Influences of bearing arrangement on seismic performance of curve bridge with unequal height piers[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2019,39(04):227-235.[doi:10.13197/j.eeev.2019.04.227.wuwp.024]
点击复制

支座布置对不等高墩曲线桥梁抗震性能的影响分析
分享到:

《地震工程与工程振动》[ISSN:/CN:]

卷:
39
期数:
2019年04
页码:
227-235
栏目:
论文
出版日期:
2019-09-30

文章信息/Info

Title:
Influences of bearing arrangement on seismic performance of curve bridge with unequal height piers
作者:
吴文朋1 彭巧威1 龙士国1 张凤涛2 王月3
1. 湘潭大学 土木工程与力学学院, 湖南 湘潭 411105;
2. 中国铁路设计集团有限公司, 天津 300251;
3. 天津市公路工程总公司, 天津 300201
Author(s):
WU Wenpeng1 PENG Qiaowei1 LONG Shiguo1 ZHANG Fengtao2 WANG Yue3
1. College of Civil Engineering and Mechanics, Xiangtan University, Xiangtan 411105, China;
2. China Railway Design Corporation, Tianjin 300251, China;
3. Tianjin Highway Engineering General Company, Tianjin 300201, China
关键词:
支座布置抗震性能曲线桥梁不等高桥墩地震
Keywords:
bearing arrangementseismic performancecurve bridgeunequal height piersearthquake
分类号:
U442.5+5
DOI:
10.13197/j.eeev.2019.04.227.wuwp.024
摘要:
为探讨支座布置形式对山区不等高墩曲线梁桥地震响应的影响,以一座5跨连续曲线梁桥为例,建立了桥梁的OpenSEES有限元模型,拟定了12种不同的支座布置形式,分别输入7条远场地震波进行非线性时程分析,对支座和墩柱的地震响应以及损伤进行比较分析。分析结果表明:不等高墩曲线桥的低墩宜采用板式橡胶支座或活动支座,并设置横向挡块来限制主梁过大的横向位移;高墩可采用铅芯橡胶支座或固定支座;由于弯-扭耦合作用以及地震波输入方向效应的影响,支座布置形式对桥墩损伤的影响规律与直线桥类似但不完全一致;曲线桥梁支座的切向相对变形与墩台的侧向刚度有较大关系,而支座径向相对变形不仅对支座布置形式较敏感,还与地震波的输入方向以及曲线桥的不规则性相关;曲线桥梁上部结构在桥台主动方向的切向变形量比直线桥梁大得多,更易发生落梁破坏,因此桥台处更适用采用限位能力较好的铅芯橡胶支座。
Abstract:
In order to investigate the influence of bearing arrangement on seismic performance of the curve girder bridges with unequal height piers in mountain areas, a five span concrete continuous curved girder was taken as an example and the OpenSEES software was used to establish the finite element model of the bridge. Twelve different kinds of bearing arrangement were adopted for analysis and seven far-fault ground motions were used for nonlinear time-history analysis, respectively. The seismic response and damage status ofthe bearings and pierswere compared and analyzed. It is conclude that, the plate-type elastomeric bearing or sliding bearing should be used at the lower piers of the curve bridges. Meanwhile, the transverse retainers should be designed to limit the excessive lateral girder displacement. The lead rubber bearingor the rigid bearing can be used at the higher piers. Due to the effect of bending-torsional coupling and the input direction of seismic waves, the influence of bearing arrangement on pier damage is similar to but not completely consistent with that of straight bridge. The tangential relative deformation response of bearings is closely related to the lateral stiffness of piersor abutments. The radial relative deformation of bearing is not only sensitive to the form of bearing arrangement, but also closely related to the input direction of ground motions and the irregularity of the curved bridges. The tangential deformation of the curved bridge superstructure in the active direction of the abutment is much larger than that of the straight bridge, which will lead to girder fall failure easier. Therefore, thelead rubber bearing with better constraint capability is more suitable for the bearing arrangement at the abutment.

参考文献/References:

[1] 陈乐生. 汶川地震公路震害调查-桥梁[M]. 2012, 人民交通出版社. CHEN Lesheng. Report on highway’s damage in the wenchuan earthquake-bridge[M]. Beijing:China Communications Press, 2012. (in Chinese)
[2] 王东升, 郭迅, 孙治国, 等. 汶川大地震公路桥梁震害初步调查[J]. 地震工程与工程振动, 2009, 29(3):84-94. WANG Dongsheng,GUO Xun,SUN Zhiguo,et al.Damage to highway bridges during Wenchuan Earthquake[J]. Earthquake Engineering and Engineering Dynamics,2009,29(3):84-94. (in Chinese)
[3] 王东升, 孙治国, 李晓莉, 等. 汶川大地震曲线梁桥震害及破坏机理分析[J]. 防灾减灾工程学报, 2010, 30(5):572-579. WANG Dongsheng, SUN Zhiguo, LI Xiaoli, et al. Seismic damage investigation and failure mechanism analysis of curved bridges in wenchuan earthquake[J]. Journal of Disaster Prevention and Mitigation Engineering, 2010, 30(5):572-579. (in Chinese)
[4] 石岩, 王进, 王东升, 等. 采用板式橡胶和铅芯橡胶支座的山区桥梁地震损伤评价[J]. 地震工程与工程振动, 2014, 34(1):237-241. SHI Yan,WANG Jin, WANG Dongsheng, et al. Seismic damage evaluation of bridges with RBs and LRBs in mountainous areas[J]. Earthquake Engineering and Engineering Dynamics, 2014, 34(1):237-241.(in Chinese)
[5] 吴文朋, 李立峰, 胡思聪. 近场地震作用下支座布置对连续梁桥的抗震性能影响分析[J]. 地震工程与工程振动, 2015, 35(4):155-163. WU Wenpeng, LI Lifeng, HU Sicong.Effects of the bearing arrangement on seismic performance of continuous girder bridges under near-fault ground motions[J]. Earthquake Engineering and Engineering Dynamics, 2015,35(4):155-163. (in Chinese)
[6] 汤虎, 李建中. 板式橡胶支座桥梁地震位移控制方法[J]. 中国公路学报, 2013, 26(3):110-116. TANG Hu, LI Jianzhong. Displacement control method for continuous bridges on laminated rubber bearings under earthquake excitation[J]. China Journal of Highway and Transport, 2013, 26(3):110-116. (in Chinese)
[7] Tanaka R, Galindo C M, Hayashikawa T. Nonlinear seismic dynamic response of continuous curved highway viaducts with different bearing supports[C]//in International Conference on Earthquake and Structural Engineering. 2011.
[8] Silvia Mazzoni, Frank Mckenna. Michael H, et al. Open system for earthquake engineering simulation user manual[M]. Pacific Earthquake Engineering Research Center, University of California, Berkeley, 2005.
[9] 吴文朋. 考虑不确定性的钢筋混凝土桥梁地震易损性研究[D].长沙:湖南大学, 2016. WU Wenpeng. Seismic fragility of reinforced concrete bridges with consideration of various sources of uncertainty[D]. Changsha:Hunan University, 2016. (in Chinese)
[10] 吴文朋, 李立峰, 徐卓君, 等. 不确定性对钢筋混凝土桥梁系统地震易损性的影响[J]. 地震工程与工程振动, 2018, 38(6):161-170 WU Wenpeng,LI Lifeng,XU Zhuojun,et al.Influences of uncertainties on system seismic fragility for the reinforced concrete bridges[J].Earthquake Engineering and Engineering Dynamics,2018,38(6):161-170. (in Chinese)
[11] FEMAP695,Quantification of Building Seismic Performance Factors[R]. Washington D C:Federal Emergency Management Agency, 2009.
[12] JTG/TB02-012008公路桥梁抗震设计细则[S]. 北京:人民交通出版社,2008. JTG/TB02-01-2008 Guidelines for Seismic Design of Highway Bridges[S]. Beijing:China Communication Press, 2008. (in Chinese)
[13] 王克海. 桥梁抗震研究[M].第2版,北京:中国铁道出版社,2014. WANG Kehai. Research on seismic resistance of bridges[M]. 2nd ed.. Beijing:China Railway Publishing House, 2014.(in Chinese)
[14] Seible F,Priestley M J N, Calvi G M, et al. Seismic Design and Retrofit of Bridges[M]. John Wiley & Sons, 1996.

相似文献/References:

[1]王满生,杨威,陈俞,等.北京地区农村砖木结构振动台试验研究[J].地震工程与工程振动,2012,32(01):128.
 WANG Mansheng,YANG Wei,CHEN Yu,et al.Shaking table test on a typical brick-timber structure model in rural areas of Beijing[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2012,32(04):128.
[2]周颖,于健,吕西林,等.高层钢框架-混凝土核心筒混合结构振动台试验研究[J].地震工程与工程振动,2012,32(02):098.
 ZHOU Ying,YU Jian,LU Xilin,et al.Shaking table model test of a high-rise hybrid structure building with steel frame-concrete core wall[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2012,32(04):098.
[3]林明森,戴绍斌,刘记雄,等.T形钢管混凝土柱与钢梁外伸端板连接节点抗震性能试验研究[J].地震工程与工程振动,2012,32(02):114.
 LIN Mingsen,DAI Shaobin,LIU Jixiong,et al.Experimental study on seismic performance of end-plate connections of concrete-filled steel tube T-section column and steel beam[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2012,32(04):114.
[4]曹万林,彭斌,王智慧,等.底部加强型多腔钢管混凝土巨型柱抗震性能试验研究[J].地震工程与工程振动,2012,32(02):120.
 CAO Wanlin,PENG Bin,WANG Zhihui,et al.Experimental research on seismic behavior of bottom strengthened multi-cell CFST mega-columns[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2012,32(04):120.
[5]尚守平,杭翠翠.砖墙体抗震承载力仿真分析与试验对比[J].地震工程与工程振动,2012,32(02):139.
 SHANG Shouping,HANG Cuicui.Simulation of masonry structure’s seismic capacity and its comparison with experimental results[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2012,32(04):139.
[6]白晓红,楚留声.型钢混凝土剪力墙抗震性能影响参数研究[J].地震工程与工程振动,2012,32(03):073.
 BAI Xiaohong,CHU Liusheng.Influencing parameters of seismic performance for steel reinforced concrete shear walls[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2012,32(04):073.
[7]周中一,曹万林,董宏英,等.一种带构造柱混凝土砌块墙体抗震性能试验研究[J].地震工程与工程振动,2012,32(03):086.
 ZHOU Zhongyi,CAO Wanlin,DONG Hongying,et al.Experimental study on seismic performance of new concrete block masonry wall with constructional columns[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2012,32(04):086.
[8]陆伟东,邓大利.木结构榫卯节点抗震性能及其加固试验研究[J].地震工程与工程振动,2012,32(03):109.
 LU Weidong,DENG Dali.Experimental research on seismic performance of wooden mortise-tenon joints before and after reinforcement[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2012,32(04):109.
[9]王晓菡,柳炳康,田雨,等.再生混凝土框架顶层角节点的抗震性能试验研究[J].地震工程与工程振动,2012,32(04):118.
 WANG Xiaohan,LIU Bingkang,TIAN Yu,et al.Experimental study on seismic behavior of knee-joints in recycled concrete frame[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2012,32(04):118.
[10]李忠献,周晓洁,夏多田,等.免蒸免烧粉煤灰多孔砖墙体抗震性能试验研究[J].地震工程与工程振动,2012,32(04):125.
 LI Zhongxian,ZHOU Xiaojie,XIA Duotian,et al.Experiment on seismic behavior of non-autoclaved and non-sintered fly-ash perforated brick walls[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2012,32(04):125.

备注/Memo

备注/Memo:
收稿日期:2018-12-24;改回日期:2019-4-12。
基金项目:湖南省科技重大专项(2017SK1010);国家自然科学基金项目(51708477);中国博士后科学基金项目(2018M640756);湖南省教育厅科研项目(18C0099)
作者简介:吴文朋(1985-),男,讲师,博士,主要从事桥梁抗震研究.E-mail:wuwenpeng@xtu.edu.cn
通讯作者:龙士国(1972-),男,教授,博士,主要从事工程结构防灾减灾关键技术研究.E-mail:longsg@x
更新日期/Last Update: 1900-01-01