[1]姚厚企,杨培研,刘鑫,等.常温下PMMA低、高应变率压缩力学性能[J].地震工程与工程振动,2019,39(06):091-96.[doi:10.13197/j.eeev.2019.06.91.yaohq.013]
 YAO Houqi,YANG Peiyan,LIU Xin,et al.Compression mechanical properties of PMMA under room temperature at low and high strain rates[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2019,39(06):091-96.[doi:10.13197/j.eeev.2019.06.91.yaohq.013]
点击复制

常温下PMMA低、高应变率压缩力学性能
分享到:

《地震工程与工程振动》[ISSN:/CN:]

卷:
39
期数:
2019年06
页码:
091-96
栏目:
论文
出版日期:
2019-12-31

文章信息/Info

Title:
Compression mechanical properties of PMMA under room temperature at low and high strain rates
作者:
姚厚企 杨培研 刘鑫 曲嘉
哈尔滨工程大学 航天与建筑工程学院, 黑龙江 哈尔滨 150001
Author(s):
YAO Houqi YANG Peiyan LIU Xin QU Jia
College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin 150001, China
关键词:
PMMA力学性能分离式霍普金森压杆应变率效应韧脆转化
Keywords:
PMMAmechanical propertiesSHPB strain-rate effecttoughness-brittleness transition
分类号:
O347.3
DOI:
10.13197/j.eeev.2019.06.91.yaohq.013
摘要:
有机玻璃是一种常用的高分子有机聚合物,它在人类生产生活的过程中起到了重要的作用,被广泛应用于制造抗冲击工程构件的结构零件,如各种冲击防护的透光屏、飞机的风挡、舷窗以及战斗机的座舱盖和各类汽车的挡风玻璃及天窗等,其静态力学性能已经得到了充分研究,但其动态力学性能研究较少,尚不足以满足工程应用需求。本文主要通过实验方法研究有机玻璃的力学性能,利用INSTRON电子万能试验机和分离式霍普金森压杆装置对有机玻璃试样进行了准静态和冲击情况下的压缩实验。结果表明在常温下,PMMA具有较强的应变率敏感性,抗压强度随应变率的增加而增加,表现了应变率增强效应,其破坏形式也存在率敏感性,在低应变率情况下表现为韧性破坏,在高应变率下呈现脆性破坏。
Abstract:
The plexiglass is a commonly used polymer organic polymer, which plays an essential role in the production and life of human beings. It is widely used in the manufacture of structural parts for impact-resistant engineering components, Such as various impact-protected translucent screens, aircraft windshields, portholes, and cockpit covers for fighters and windshields and sunroofs for multiple types of vehicles, etc. Its static mechanical properties have been adequately studied, but its dynamic mechanical properties are lack of research, and it is not enough to meet the needs of engineering applications. In this paper, the mechanical properties of plexiglass were studied by experimental methods. The plexiglass samples were subjected to quasi-static and impact compression experiments using the INSTRON electronic universal testing machine and the separate Hopkinson pressure bar device. The results show that PMMA has keen strain rate sensitivity at room temperature, and the compressive strength increases with the increase of strain rate, which shows the strain rate enhancement effect, and the damage form also has rate sensitivity, which is expressed at low strain rate. For ductile failure, it exhibits brittle failure at high strain rates.

参考文献/References:

[1] Arruda, Ellen M, Mary C Boyce, Jayachandran. Effects of strain rate, temperature and the rmomechanical coupling on the finite strain deformation of glassy polymers[J]. Mechanics of Materials, 1995, 19(2/3):193-212.
[2] LI Zhouhua, John LAMBROS. Strain rate effects on the thermomechanical behavior of polymers[J].International Journal of Solids and Structures, 2001, 38(20):3549-3562.
[3] CHEN W, LU F, CHENG M. Tension and compression tests of two polymers under quasi-static and dynamic loading[J].Polymer Testing, 2002, 21(2):113-121.
[4] Lee O S, Kim M S. Dynamic material property characterization by using split Hopkinson pressure bar(SHPB) technique[J]. Nuclear Engineering and Design, 2003, 226(2):119-125.
[5] 范瑞鹤. 基于有机玻璃拉伸试验的本构关系拟合及有限元实例分析[D]. 哈尔滨:哈尔滨工业大学, 2012. FAN Ruihe. The fitting of the constitutive relationship of PMMA and fea research based on tensile tests[D].Harbin:Harbin Institute of Technolog,2012.(in Chinese)
[6] Mulliken A D, Boyce M C. Mechanics of the rate-dependent elastic-plastic deformation of glassy polymers from low to high strain rates[J]. International Journal of Solids and Structures, 2005, 43(5):1331-1356.
[7] J Richeton J, Schlatter G, Vecchio K S, et al. A unified model for stiffness modulus of amorphous polymers across transition temperatures and strain rates[J]. Polymer, 2005, 46(19):8194-8201.
[8] Makradi A, Ahzi S, et al.Modeling and validation of the large deformation inelastic response of amorphous polymers over a wide range of teperature and strain rate[J].International Journal of Solid and Structures, 2007,44:7940-7953.
[9] 吴衡毅, 马钢, 夏源明, 等. PMMA低、中应变率单向拉伸力学性能的实验研究[J].实验力学, 2005, 20(2):193-199. WU Hengyi,MA Gang,XIA Yuanming,et al. Experimental Study on Mechanical Properties of PMMA under Unidirectional Tensile at Low and Intermediate Strain Rates[J]. Journal of Experimental Mechanics, 2005, 20(2):193-199. (in Chinese)
[10] 范金娟, 张卫方, 陈新文.定向有机玻璃的拉伸断裂行为研究[J].航空材料学报, 2006, 26(5):106-108. FAN Jinjuan, ZHANG Weifang, CHEN Xinwen. Investigation of tensile fracture behavior of directional PMMA[J]. Journal of Aeronautical Materials|J Aeron Mater, 2006, 26(5):106-108. (in Chinese)
[11] 周君, 汪洋, 夏源明.有机玻璃纯Ⅰ型和纯Ⅱ型动态断裂行为的实验研究[J].高分子材料科学与工程, 2008, 24(2):20-13, 18. ZHOU Jun, WANG Yang, XIA Yuanming. Experimental study of dynamic fracture behavior of PMMA under pure mode-Ⅰ and pure mode-Ⅱ loading conditions[J].Polymeric Materials Science and Engineering|Polym Mater Sci Eng, 2008, 24(2):20-13, 18. (in Chinese)
[12] 胡文军, 陈勇梅, 谢若泽, 等. 有机玻璃在宽温度、宽应变率范围压缩性能实验研究[J]. 中国测试, 2016, 42(10):9-12. HU Wenjun, CHEN Yongmei, XIE Ruozhe, et al. Experimental study on compressive property of PMMA within wide temperature and wide strain rate range[J]. China Measurement & Test, 2016, 42(10):9-12. (in Chinese)
[13] 谢中秋, 张蓬蓬.PMMA材料的动态压缩力学特性及应变率相关本构模型研究[J].实验力学, 2013, 28(2):220-226. XIE Zhongqiu, ZHANG Pengpeng. On the dynamic compressive mechanical properties and strain rate related constitutive model of PMMA material[J] Journal of Experimental Mechanics, 2013, 28(2):220-226.(in Chinese)

相似文献/References:

[1]王建强,王翔,赵卓.水平双向压剪状态下铅芯叠层橡胶支座力学性能研究[J].地震工程与工程振动,2014,34(05):197.[doi:10.13197/j.eeev.2014.05.197.wangjq.025]
 WANG Jianqiang,WANG Xiang,ZHAO Zhuo.Study on the mechanical properties of lead rubber bearing in bidirectional compression-shear state[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2014,34(06):197.[doi:10.13197/j.eeev.2014.05.197.wangjq.025]
[2]周云,廖奕发,郭阳照,等.阻尼填充墙SBS层性能试验研究[J].地震工程与工程振动,2014,34(06):083.[doi:10.13197/j.eeev.2014.06.83.zhouy.011]
 ZHOU Yun,LIAO Yifa,GUO Yangzhao,et al.Experimental performance study on SBS layer of damping infill wall[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2014,34(06):083.[doi:10.13197/j.eeev.2014.06.83.zhouy.011]
[3]孙洪鑫,宾帅,王修勇.超弹性形状记忆合金滞回参数模型研究[J].地震工程与工程振动,2016,36(06):079.[doi:10.13197/j.eeev.2016.06.79.sunhx.010]
 SUN Hongxin,BIN Shuai,WANG Xiuyong.Hysteretic parameters model of super-elastic shape memory alloy[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2016,36(06):079.[doi:10.13197/j.eeev.2016.06.79.sunhx.010]
[4]何承义,王景波,张显军,等.基于养护制度的冬季施工桥梁混凝土耐久性研究[J].地震工程与工程振动,2017,37(02):205.[doi:10.13197/j.eeev.2017.02.205.hecy.024]
 HE Chengyi,WANG Jingbo,ZHANG Xianjun,et al.Research on the durability of bridge concrete in winter construction based on curing condition[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2017,37(06):205.[doi:10.13197/j.eeev.2017.02.205.hecy.024]
[5]梁岩,班亚云,罗小勇,等.不同荷载模式下锈蚀钢筋力学性能研究[J].地震工程与工程振动,2017,37(04):022.[doi:10.13197/j.eeev.2017.04.22.liangy.003]
 LIANG Yan,BAN Yayun,LUO Xiaoyong,et al.Study on mechanical performance of corroded reinforcement bar under different loading modes[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2017,37(06):022.[doi:10.13197/j.eeev.2017.04.22.liangy.003]
[6]马玉宏,李艳敏,赵桂峰,等.基于热老化作用的橡胶隔震支座力学性能时变规律研究[J].地震工程与工程振动,2017,37(05):038.[doi:10.13197/j.eeev.2017.05.38.mayh.004]
 MA Yuhong,LI Yanmin,ZHAO Guifeng,et al.Research on the time-dependent law of mechanical properties for the rubber isolation bearings based on thermal aging effect[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2017,37(06):038.[doi:10.13197/j.eeev.2017.05.38.mayh.004]
[7]张锡成,吴晨伟,薛建阳,等.轴压作用下斗栱的精细化有限元模型研究[J].地震工程与工程振动,2018,38(01):065.[doi:10.13197/j.eeev.2018.01.65.zhangxc.008]
 ZHANG Xicheng,WU Chenwei,XUE Jianyang,et al.A study of precise finite element model of Dougong subjected to vertical load[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2018,38(06):065.[doi:10.13197/j.eeev.2018.01.65.zhangxc.008]
[8]梁刚,郭宏超,刘云贺,等.考虑力组合效应的钢框架端板连接力学行为[J].地震工程与工程振动,2019,39(01):096.[doi:10.13197/j.eeev.2019.01.96.liangg.012]
 LIANG Gang,GUO Hongchao,LIU Yunhe,et al.Mechanical behavior of steel frame end-plate connections considering force combination effect[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2019,39(06):096.[doi:10.13197/j.eeev.2019.01.96.liangg.012]
[9]张亚飞,谭平,刘晗,等.钢筋混凝土框架隔震楼梯地震反应分析[J].地震工程与工程振动,2019,39(05):157.[doi:10.13197/j.eeev.2019.05.157.zhangyf.016]
 ZHANG Yafei,TAN Ping,LIU Han,et al.Seismic response analysis of reinforced concrete frame structure with isolated staircase[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2019,39(06):157.[doi:10.13197/j.eeev.2019.05.157.zhangyf.016]

备注/Memo

备注/Memo:
收稿日期:2019-09-10;改回日期:2019-10-11。
基金项目:国防科技工业基础研究项目(JCKY2018604B004);国家自然科学基金项目(11972007);中央高校基本科研业务费专项资金项目(HEUCFP201723/HEUCFM180202)
作者简介:姚厚企(1997-),男,硕士研究生,主要从事材料冲击动力学研究.E-mail:aria@hrbeu.edu.cn
通讯作者:曲嘉(1979-),男,副教授,博士,主要从事固体实验力学和冲击动力学方面研究.E-ma
更新日期/Last Update: 1900-01-01