[1]王伟,倪一文,赵祯,等.基于局部表面纳米化薄板的抗屈曲优化设计[J].地震工程与工程振动,2019,39(06):123-127.[doi:10.13197/j.eeev.2019.06.123.wangw.017]
 WANG Wei,NI Yiwen,ZHAO Zhen,et al.A method for anti-buckling design of thin-walledplates aid local surface self-nanocrystallization[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2019,39(06):123-127.[doi:10.13197/j.eeev.2019.06.123.wangw.017]
点击复制

基于局部表面纳米化薄板的抗屈曲优化设计
分享到:

《地震工程与工程振动》[ISSN:/CN:]

卷:
39
期数:
2019年06
页码:
123-127
栏目:
论文
出版日期:
2019-12-31

文章信息/Info

Title:
A method for anti-buckling design of thin-walledplates aid local surface self-nanocrystallization
作者:
王伟1 倪一文1 赵祯1 廉增博1 徐新生1 林志华2
1. 大连理工大学 工程力学系和工业装备结构分析国家重点实验室, 辽宁 大连 116024;
2. 香港城市大学 土木与建筑工程系, 中国 香港
Author(s):
WANG Wei1 NI Yiwen1 ZHAO Zhen1 LIAN Zengbo1 XU Xinsheng1 LIM Cheewah2
1. State Key Laboratory of Structural Analysis for Industrial Equipment and Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China;
2. Department of Civil and Architectural Engineering, City University of Hong Kong, Hong Kong, China
关键词:
薄板表面纳米技术临界载荷屈曲模态抗屈曲优化设计
Keywords:
thin-walled platestechnology of surface self-nanocrystallizationcritical loadbuckling modeanti-buckling optimization design
分类号:
TB122
DOI:
10.13197/j.eeev.2019.06.123.wangw.017
摘要:
提出一种新的局部表面纳米化薄板抗屈曲设计思路。利用局部表面纳米化技术改变板结构关键部位的力学性能,建立圆板的径向扇形间隔纳米化模型,环向条带环状间隔纳米化模型和片状布局纳米化模型。采用优化设计方法,对圆板抗屈曲问题进行数值模拟。结果表明,经局部表面纳米化的薄板可显著提高屈曲临界载荷。这种方法为薄板结构的抗屈曲工程设计提供了依据。
Abstract:
In this paper, a new anti-buckling design of thin-walled plates with local surface nanocrystallization is proposed. Local surface nanocrystallization is utilized to modify the mechanical properties of the critical parts on circular plates, the local nanocrystallization layouts of radial spaced sectors, circumferential spaced stripes and rectangular blocks are designed. With optimization methods, numerical simulations of anti-buckling problems for circular plates are investigated. Results show that the critical loads of circular plates are enhanced significantly after local nanocrystalization treatment and this technology provides a guidance for anti-buckling design of plate structures in engineering application.

参考文献/References:

[1] 马加路, 张令心, 陈永盛. 从16WCEE会议看防屈曲支撑的未来发展趋势[J]. 地震工程与工程振动, 2017, 37(3):127-35. MA Jialu, ZHANG Lingxin, CHEN Yongsheng. The future developing trends of buckling restrained braces from the 16WCEE[J]. Earthquake Engineering and Engineering Dynamics, 2017,37(3):127-135.(in Chinese)
[2] 郝际平, 申新波, 边浩, 等. 密肋防屈曲钢板剪力墙低周反复荷载试验研究[J]. 地震工程与工程振动, 2015, 35(6):114-20. HAO Jiping, SHEN Xinbo, BIAN Hao, et al. Cyclic test of a grid-stiffened buckling restrained steel plate shear wall[J]. Earthquake Engineering and Engineering Dynamics, 2015,35(6):114-120.(in Chinese)
[3] 李洋, 谭平, 林裕辉, 等. 带竖向隔板的屈曲约束钢板剪力墙抗震性能试验研究[J]. 地震工程与工程振动, 2018, 38(3):10-9. LI Yang,TAN Ping,LIN Yuhui, et al.Experimental investigation on seismic behavior of buckling-restrained steel plate shear wall with vertical diaphragms[J]. Earthquake Engineering and Engineering Dynamics, 2018,38(3):010-19.(in Chinese)
[4] Franc K, Chen J. Buckling of a thin annular plate subjected to two opposite locally acting pressures and supported at two opposite points[J]. International Journal of Mechanical Sciences, 1997, 39(12):1325-1343.
[5] Jillella N, Peddieson J. Modeling of wrinkling of thin circular sheets[J]. International Journal of Non-Linear Mechanics, 2012, 47:85-91.
[6] Qin QH, Huang YY. BEM of postbuckling analysis of thin plates[J]. Applied Mathematical Modelling, 1990, 14:544-548.
[7] Wang A W. Axisymmetric and asymmetric postbuckling response and energy release rate of delaminated circular film[J]. International Journal of Mechanical Sciences, 1999, 41:43-58.
[8] Wang A W. Axisymmetric postbuckling and secondary bifurcation buckling of circular plates[J]. International Journal of Non-Linear Mechanics, 2000, 35:279-292.
[9] 徐新生,邱文彪,周震寰,等. 在哈密顿体系下的弹性圆板热屈曲问题[J]. 大连理工大学学报,2008,48(1):1-5. XU Xinsheng, QIU Wenbiao, ZHOU Zhenhuan, et al. Thermal buckling problem of elastic circular plates in Hamiltonian system[J]. Journal of Dalian University of Technology, 2008, 48(1):1-5.(in Chinese)
[10] 徐新生, 邱文彪, 付月, 等. 辛方法在弹性圆板屈曲问题中的应用[J]. 应用力学学报,2009,26(3):530-534. XU Xinsheng, QIU Wenbiao, FU Yue, et al. Application of symplectic method in buckling of elastic circular plates[J]. Chinese Journal of Applied Mechanics,2009,26(3):530-534.(in Chinese)
[11] Lim C W. Symplectic elasticity approach for free vibration of rectangular plates[J]. Advances in Vibration Engineering, 2010, 9(2):159-163.
[12] Zhou Z H, Wong K W, Xu X S, et al. Natural vibration of circular and annular thin plates by Hamiltonian approach[J]. Journal of Sound and Vibration, 2011, 330:1005-1017.
[13] Najafizadeh M M, Eslami M R. Buckling analysis of circular plates of functionally graded materials under uniform radial compression[J]. International Journal of Mechanical Sciences, 2002, 44:2479-2493.
[14] Najafizadeh M M, Heydari H R. An exact solution for buckling of functionally graded circular plates based on higher order shear deformation plate theory under uniform radial compression[J]. International Journal of Mechanical Sciences, 2008, 50:603-612.
[15] Ma L S, Wang T J. Nonlinear bending and post-buckling of a functionally graded circular plate under mechanical and thermal loadings[J]. International Journal of Solids and Structures, 2003, 40:3311-3330.
[16] Shariyat M, Jafari R. Nonlinear low-velocity impact response analysis of a radially preloaded two-directional-functionally graded circular plate:A refined contact stiffness approach[J]. Composites:Part B, 2013, 45:981-994.
[17] Lu K, Lu J. Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment[J]. Materials Science and Engineering:A, 2004, 375:38-45.
[18] Zhu L L, Ruan H H, et al. Modeling grain size dependent optimal twin spacing for achieving ultimate high strength and related high ductility in nanotwinned metals[J]. Acta Materialia, 2011, 59:5544-5557.
[19] Zhu L L, Lu J. Modelling the plastic deformation of nanostructured metals with bimodal grain size distribution[J]. International Journal of Plasticity, 2012:30-31,166-184.
[20] Qiu W B, Zhou Z H, Xu X S, The dynamic behavior of circular plates under impact loads[J]. Journal of Vibration Engineering and Technologies, 2016, 4(2):111-116.

相似文献/References:

[1]陈营利,李澄,周震寰,等.基于表面纳米化新型吸能结构的设计方法[J].地震工程与工程振动,2019,39(06):143.[doi:10.13197/j.eeev.2019.06.143.chenyl.020]
 CHEN Yingli,LI Cheng,ZHOU Zhenhuan,et al.A new design method of energy absorption structures aid surface self-nanocrystallization[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2019,39(06):143.[doi:10.13197/j.eeev.2019.06.143.chenyl.020]

备注/Memo

备注/Memo:
收稿日期:2019-08-25;改回日期:2019-09-26。
基金项目:大连市科技创新基金双重项目(2018J11CY005);深圳市科创委重大计划项目(JCYJ20170413141248626)
作者简介:王伟(1993-),男,硕士研究生,主要从事工程力学研究.E-mail:21703048@mail.dlut.edu.cn
通讯作者:徐新生(1957-),男,教授,博士,主要从事工程力学研究.E-mail:xsxu@dlut.edu.cn
更新日期/Last Update: 1900-01-01