[1]韩建平,周帅帅.考虑非结构构件损伤的钢筋混凝土框架建筑多维地震易损性分析[J].地震工程与工程振动,2020,40(01):039-48.[doi:10.13197/j.eeev.2020.01.39.hanjp.005]
 HAN Jianping,ZHOU Shuaishuai.Multi-dimensional seismic fragility analysis of reinforced concrete framed building considering damage of non-structural components[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2020,40(01):039-48.[doi:10.13197/j.eeev.2020.01.39.hanjp.005]
点击复制

考虑非结构构件损伤的钢筋混凝土框架建筑多维地震易损性分析
分享到:

《地震工程与工程振动》[ISSN:/CN:]

卷:
40
期数:
2020年01
页码:
039-48
栏目:
论文
出版日期:
2020-05-30

文章信息/Info

Title:
Multi-dimensional seismic fragility analysis of reinforced concrete framed building considering damage of non-structural components
作者:
韩建平12 周帅帅12
1. 兰州理工大学 甘肃省土木工程防灾减灾重点实验室, 甘肃 兰州 730050;
2. 兰州理工大学 防震减灾研究所, 甘肃 兰州 730050
Author(s):
HAN Jianping12 ZHOU Shuaishuai12
1. Key Laboratory of Disaster Prevention and Mitigation in Civil Engineering of GansuProvince, Lanzhou University of Technology, Lanzhou 730050, China;
2. Institute of Earthquake Protection and Disaster Mitigation, Lanzhou University of Technology, Lanzhou 730050, China
关键词:
地震易损性多维性能极限状态非结构性能指标相关性不确定性
Keywords:
seismic fragilitymulti-dimensional performance limit statenon-structural performance indexcorrelationuncertainty
分类号:
P315.9
DOI:
10.13197/j.eeev.2020.01.39.hanjp.005
摘要:
基于单一指标的传统地震易损性分析忽略了非结构构件损伤对建筑抗震性能的影响。首先基于多维性能极限状态理论建立了三维性能极限状态方程,并对几种特殊情况下的三维阈值曲面进行了讨论。进而以最大层间位移角作为整体结构与位移敏感型非结构构件的性能指标,以峰值楼面加速度作为加速度敏感型非结构构件的性能指标,对建筑的结构损伤和非结构损伤进行描述。考虑各性能指标之间的相关性和各性能指标所对应的极限状态阈值的不确定性,建立了建筑在地震作用下的三维性能极限状态的超越概率函数。最后,采用OpenSees有限元软件对一7层钢筋混凝土框架填充墙建筑进行增量动力分析,得到其各性能水平下的地震易损性曲线。分析结果表明,当忽略非结构构件损伤时,各性能极限状态的超越概率均降低,从而高估了建筑剩余功能水平,进而导致低估建筑的损失。在考虑各性能指标的极限状态阈值的不确定性时,对任一性能极限状态,不同变异系数取值下的易损性曲线会出现交点,在交点之前超越概率随着变异系数的增大而增大,交点之后则随着变异系数的增大而减小。在考虑性能指标间的相关性时,对任一性能极限状态,超越概率随着相关系数的减小而增大。另外,性能指标阈值的不确定性与性能指标间的相关性对地震易损性的影响随着性能水平的提高而逐渐降低,且对低性能水平下建筑地震易损性有明显影响。
Abstract:
The traditional seismic fragility analysis based on single index ignores the influence of damage of non-structural components on building performance. First, the three-dimensional performance limit state equation was established based on the multi-dimensional performance limit state theory, and several different threshold surface shapes were discussed. Then, maximum interstory drift ratio was taken as the performance index for the overall structure and the displacement-sensitive non-structural components, and the peak floor acceleration was taken as the performance index for the acceleration-sensitive non-structural components to describe both the structural and non-structural damage of buildings. The correlation between various performance indices and the uncertainty of the limit state threshold corresponding to each performance index were further considered to derive the exceedance probability function of the three-dimensional performance limit state of the building under ground motion. Finally, a 7-storey reinforced concrete framed building was modelled numerically via OpenSees software to perform incremental dynamic analysis (IDA). And the seismic fragility curves of the building corresponding to various performance levels were obtained. The analytical results show that when the damage of non-structural components is neglected, the exceeding probability corresponding to each performance level decreases thus the residual function level of the building would be overestimated and the loss would be underestimated. When the uncertainty of the limit state threshold of performance index is considered, the fragility curves with different coefficients of variation will intersect for any performance limit state. The exceedance probability increases with the increase of coefficient of variation before the intersection point, and decreases with the increase of coefficient of variation after the intersection point. When the correlation between performance indicators is considered, for any performance limit state, the seismic fragility curve of buildings shifts to the left with the decrease of correlation coefficient, which increases the probability of building exceedance. In addition, the influence of uncertainty of the threshold of the performance index and the correlation between performance indicators on seismic fragility decreases with the increase of performance level, and this kind of influence is more obvious for low performance level.

参考文献/References:

[1] Pantoli E, Chen M C, Wang X, et al. Full-scale structural and nonstructural building system performance during earthquakes:Part II-NCS damage states[J]. Earthquake Spectra, 2015, 32(2):771-794.
[2] 梁芳, 聂高众, 高建国. 地震的社会经济影响[J]. 灾害学, 2006, 21(2):110-113. LIANG Fang, NIE Gaozhong, GAO Jianguo. Earthquake effects on social economy[J]. Journal of Catastrophology, 2006, 21(2):110-113. (in Chinese)
[3] Whitman R V, Reed J W, Hong S T. Earthquake damage probability matrices[C]//Proceedings of the 5th World Conference on Earthquake Engineering. Rome, Italy. 1973, 2:2531-2540.
[4] Basoz N I, Kiremidjian A S, King S A, et al. Statistical analysis of bridge damage data from the 1994 Northridge, CA, Earthquake[J]. Earthquake Spectra, 1999, 15(1):25-54.
[5] Grossi P. Quantifying the uncertainty in seismic risk and loss estimation[D]. Philadelphia:University of Pennsylvania, 2000.
[6] Yazdi A J, Haukaas T, Yang T, et al. Multivariate fragility models for earthquake engineering[J]. Earthquake Spectra, 2016, 32(1):441-461.
[7] Badillo-Almaraz H, Whittaker A S, Reinhorn A M, et al. Seismic fragility of suspended ceiling systems[J]. Earthquake Spectra, 2007, 23(1):21-40.
[8] Hermanns L, Fraile A, Alarcón E, et al. Performance of buildings with masonry infill walls during the 2011 Lorca earthquake[J]. Bulletin of Earthquake Engineering, 2014, 12(5):1977-1997.
[9] Aslani H, Miranda E. Probabilistic earthquake loss estimation and loss disaggregation in buildings[R]. Stanford:The John A. Blume Earthquake Engineering Center, Stanford University, 2005.
[10] Cimellaro G P, Reinhorn A M. Multidimensional performance limit state for hazard fragility functions[J]. ASCE Journal of Engineering Mechanics, 2010, 137(1):47-60.
[11] 孙鸿宾, 吴子燕, 刘骁骁. 基于多维性能极限状态的结构易损性分析[J]. 工程力学, 2013, 30(5):147-152. SUN Hongbin, WU Ziyan, LIU Xiaoxiao. Multidimensional performance limit states for structural fragility estimation[J]. Engineering Mechanics, 2013, 30(5):147-152. (in Chinese)
[12] 王其昂, 吴子燕, 贾兆平. 桥梁系统地震多维易损性分析[J]. 工程力学, 2013, 30(10):192-198. WANG Qiang, WU Ziyan, JIA Zhaoping. Multi-dimensional fragility analysis of bridge system under earthquake[J]. Engineering Mechanics, 2013, 30(10):192-198. (in Chinese)
[13] CECS 160:2004建筑工程抗震性态设计通则(试用)[S]. 北京:中国计划出版社, 2004. CECS 160:2004 General Rule for Performance-Based Seismic Design of Buildings[S]. Beijing:China Planning Press,2004. (in Chinese)
[14] 祁淳. 教学建筑地震可恢复性评价方法研究[D]. 哈尔滨:中国地震局工程力学研究所, 2016. QI Chun. Research on the evaluation method of earthquake resilience of teaching building[D]. Harbin:Institute of Engineering Mechanics, China Earthquake Administration, 2016.(in Chinese)
[15] 简涛, 马玉宏, 赵桂峰, 等. 隔震连续梁桥易损性分析中标准差的取值研究[J]. 地震工程与工程振动, 2016, 36(2):93-101. JIAN Tao, MA Yuhong, ZHAO Guifeng, et al. Research on standard deviation in the vulnerability analysis of isolated continuous girder bridge[J]. Earthquake Engineering and Engineeing Dynamics,2016, 36(2):93-101. (in Chinese)
[16] 刘骁骁, 吴子燕, 王其昂. 基于多维性能极限状态的概率地震需求分析[J]. 振动与冲击, 2017, 36(1):181-187, 206. LIU Xiaoxiao, WU Ziyan, WANG Qiang. Probabilistic seismic demand analysis based on multi-dimensional performance limit states[J]. Journal of Vibration and Shock, 2017, 36(1):181-187, 206. (in Chinese)
[17] 鲁晓通. 填充墙对RC框架结构抗震性能影响的振动台对比试验研究[D]. 哈尔滨:中国地震局工程力学研究所, 2015. LU Xiaotong. Shaking table test research about the Influence of masonry-infilled wall on the seismic performance of the RC frame structures[D]. Harbin:Institute of Engineering Mechanics, China Earthquake Administration, 2015.(in Chinese)
[18] Tucker C J. Predicting the in-plane capacity of masonry infilled frames[D]. Cookeville:Tennessee Technological University, 2007.
[19] 陈银松. 框架非线性地震反应分析中填充墙的模拟方法及其影响规律[D]. 重庆:重庆大学, 2011. CHEN Yinsong. The simulation method and effect law for masonry infill walls in nonlinear seismic response analysis of reinforced concrete frames[D]. Chongqing:Chongqing University, 2011. (in Chinese)

相似文献/References:

[1]吕西林,苏宁粉,周颖.复杂高层结构基于增量动力分析法的地震易损性分析[J].地震工程与工程振动,2012,32(05):019.
 LU Xilin,SU Ningfen,ZHOU Ying.IDA-based seismic fragility analysis of a complex high-rise structure[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2012,32(01):019.
[2]吴少峰,上官萍.横桥向地面运动作用下独塔部分斜拉桥易损性分析[J].地震工程与工程振动,2010,30(02):142.
 WU Shaofeng,SHANGGUAN Ping.Seismic fragility analysis of partially cable-stayed bridge with single tower under cross-bridge ground motion[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2010,30(01):142.
[3]周奎,李伟,余金鑫.地震易损性分析方法研究综述[J].地震工程与工程振动,2011,31(01):106.
 ZHOU Kui,LI Wei,YU Jinxin.Review of seismic fragility analysis methods[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2011,31(01):106.
[4]谷音,黄怡君,卓卫东.高墩大跨连续刚构桥梁地震易损性分析[J].地震工程与工程振动,2011,31(02):091.
 GU Yin,HUANG Yijun,ZHUO Weidong.Study on seismic vulnerability of long-span continuous rigid frame bridge with high piers[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2011,31(01):091.
[5]吕大刚.结构抗震可靠度二种简化解析表达式的一致性证明[J].地震工程与工程振动,2009,29(05):059.
 LÜ,Dagang.Verification of consistency of two simplified analytical formulations for structural seismic reliability[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2009,29(01):059.
[6]刘小娟,蒋欢军.非结构构件基于性能的抗震研究进展[J].地震工程与工程振动,2013,33(06):053.
 LIU Xiaojuan,JIANG Huanjun.State-of-the-art of performance-based seismic research on nonstructural components[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2013,33(01):053.
[7]龙晓鸿,杨斌斌,樊剑,等.基于响应面法的隔震连续梁桥地震易损性分析[J].地震工程与工程振动,2014,34(02):172.[doi:10.13197/j.eeev.2014.02.172.longxh.023]
 LONG Xiaohong,YANG Binbin,FAN Jian,et al.Seismic fragility analysis of isolated continuous girder bridge using response surface method[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2014,34(01):172.[doi:10.13197/j.eeev.2014.02.172.longxh.023]
[8]郑山锁,程洋,王晓飞,等.多龄期钢框架的地震易损性分析[J].地震工程与工程振动,2014,34(06):207.[doi:10.13197/j.eeev.2014.06.207.zhengss.026]
 ZHENG Shansuo,CHENG Yang,WANG Xiaofei,et al.Seismic vulnerability analysis of multi-age steel frame structures[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2014,34(01):207.[doi:10.13197/j.eeev.2014.06.207.zhengss.026]
[9]赵桂峰,马玉宏,谭平,等.高层RC框架剪力墙隔震结构地震风险分析[J].地震工程与工程振动,2015,35(02):030.[doi:10.13197/j.eeev.2015.02.30.zhaogf.004]
 ZHAO Guifeng,MA Yuhong,TAN Ping,et al.Comparative analysis of seismic risk for high-rise RC frame-shear wall buildings with or without the isolated layer[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2015,35(01):030.[doi:10.13197/j.eeev.2015.02.30.zhaogf.004]
[10]周奎,林杰,祝文.基于增量动力分析(IDA)方法的地震易损性工程实例分析[J].地震工程与工程振动,2016,36(01):135.[doi:10.13197/j.eeev.2016.01.135.zhouk.017]
 ZHOU Kui,LIN Jie,ZHU Wen.Case study of seismic fragility analysis based on the incremental dynamic analysis(IDA) method[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2016,36(01):135.[doi:10.13197/j.eeev.2016.01.135.zhouk.017]

备注/Memo

备注/Memo:
收稿日期:2019-04-02;改回日期:2019-08-05。
基金项目:国家自然科学基金项目(51578273);教育部长江学者和创新团队发展计划(IRT_17R51)
作者简介:韩建平(1970-),男,教授,博士,主要从事结构抗震与减震控制、结构健康监测与损伤诊断研究.E-mail:jphan@lut.edu.cn
更新日期/Last Update: 1900-01-01