[1]霍林生,何枭,李宏男.铝管约束轻型防屈曲支撑的实验研究[J].地震工程与工程振动,2020,40(01):049-56.[doi:10.13197/j.eeev.2020.01.49.huols.006]
 HUO Linsheng,HE Xiao,LI Hongnan.Experimental study on lightweight buckling-restrained braces (BRB) with aluminum tubes[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2020,40(01):049-56.[doi:10.13197/j.eeev.2020.01.49.huols.006]
点击复制

铝管约束轻型防屈曲支撑的实验研究
分享到:

《地震工程与工程振动》[ISSN:/CN:]

卷:
40
期数:
2020年01
页码:
049-56
栏目:
论文
出版日期:
2020-05-30

文章信息/Info

Title:
Experimental study on lightweight buckling-restrained braces (BRB) with aluminum tubes
作者:
霍林生 何枭 李宏男
大连理工大学 建设工程学部, 辽宁 大连 116024
Author(s):
HUO Linsheng HE Xiao LI Hongnan
Department of Civil Engineering, Dalian University of Technology, Dalian 116024, China
关键词:
防屈曲支撑铝管约束滞回曲线耗能恢复力模型
Keywords:
buckling-restrained bracesrestrained by aluminum tubeshysteretic curveenergy dissipationrestoring force model
分类号:
TU352.1
DOI:
10.13197/j.eeev.2020.01.49.huols.006
摘要:
针对传统的混凝土灌浆型和全钢型防屈曲支撑质量较大,无法适用于大跨空间结构等轻型建筑的问题,本文提出一种铝管约束轻型防屈曲支撑的设计方法。在核心钢管和约束管间设置不同宽度的间隙并对部分核心钢管进行开孔,通过拉压往复试验,研究了间隙和开孔对试件性能的影响,得到构件的相关恢复力特征,并分析了试件相关参数对耗能特性的影响。结果表明,本文设计的轻型防屈曲约束支撑,滞回曲线饱满,耗能效果良好;核心钢管宜开孔且支撑间隙应设置在1 mm左右,以减轻试件端部压力并简化施工工艺。
Abstract:
In view of the problem that traditional concrete grouting and all-steel buckling-restrained braces(BRB) are too heavy to be suitable for lighter buildings such as large-span space structures, this paper presents a design method of lightweight buckling-restrained braces(BRB) restrained by aluminum tubes. Different width gaps were set between the core steel tube and the restraining tube, and some core steel tubes were perforated. Through the tensile and compression tests, the effects of gaps and perforations on the performance of the test piece were studied, The restoring force characteristics of components were obtained, and the parameters’ influence on energy dissipation characteristics of the specimen was analyzed. The results show that the lightweight BRBs designed in this paper have full hysteretic curve and good energy dissipation effect; the core steel tube should be perforated and the bracing gap should be set at about 1mm to reduce the end pressure of the specimen and simplify the construction process.

参考文献/References:

[1] SETO K. Control of vibration in civil structures[J]. Proceedings of the Institution of Mechanical Engineers Part I Journal of Systems & Control Engineering, 2004, 218(7):515-529.
[2] 冯海明, 贾松林, 胡强.消能减震结构及其在工程中的应用[J].大众科技, 2009, 11(7):72-73. FENG Haiming, JIA Songlin, HU Qiang.Energy dissipation structure and its application in engineering[J].Popular Science& Technology, 2009,11(7):72-73. (in Chinese)
[3] 孙进伟.基于新型形状记忆合金防屈曲支撑的海洋平台结构振动控制研究[D].青岛:青岛理工大学, 2012. SUN Jinwei.Vibration control of offshore platform structures based on new shape memory alloy buckling-resistant braces[D]. Qingdao:Qingdao University of Technology, 2012.(in Chinese)
[4] 孙治国, 华承俊, 石岩, 等.利用BRB实现桥梁排架基于保险丝理念的抗震设计[J].振动与冲击, 2015, 34(22):199-205. SUN Zhiguo, HUA Chengjun, SHI Yan, et al.Seismic design of bridge bents with BRB as structural fuse[J].Journal of Vibration and Shock, 2015, 34(22):199-205.(in Chinese)
[5] 吴徽, 张艳霞, 张国伟, 等.防屈曲支撑作为可替换耗能元件抗震性能试验研究[J].土木工程学报, 2013, 46(11):29-36. WU Hui, ZHANG Yanxia, ZHANG Guowei, et al.Experimental study on seismic performance of replaceable buckling restrained braces in reinforced concrete frame[J].China Civil Engineering Journal, 2013, 46(11):29-36.(in Chinese)
[6] 周云.防屈曲耗能支撑结构设计与应用[M].北京:中国建筑工业出版社, 2007. ZHOU Yun.Design and application of buckling-restrained brace structure[M].Beijing:China Architecture & Building Press, 2007.(in Chinese)
[7] 赵俊贤, 吴斌.防屈曲支撑的工作机理及稳定性设计方法[J].地震工程与工程振动, 2009, 29(3):131-139. ZHAO Junxian, WU Bin.Working mechanism and stability design methods of buckling-restrained braces[J].Earthquake Engineering and Engineering Dynamics, 2009, 29(3):131-139. (in Chinese)
[8] ZHAO Xiaoling, ZHANG Lei.State-of-the-art review on FRP strengthened steel structures[J].Steel Construction, 2007, 29(8):1808-1823.
[9] 胥晓光, 潘鹏, 叶列平, 等.GFRP-钢屈曲约束支撑力学性能与端部构造影响实验研究[J].工程抗震与加固改造, 2014, 36(6):1-6. XU Xiaoguang, PAN Peng, YE Lieping, et al.GFRP-steel buckling restrained braces:experimental study on mechanical properties and end structure effects[J].Earthquake Resistant Engineering and Retrofitting, 2014, 36(6):1-6.(in Chinese)
[10] 沙吾列提·拜开依, 冯鹏.GFRP管防屈曲加固槽钢构件轴压性能试验研究[J].工程抗震与加固改造, 2016, 38(4):100-107. SHA WU LIETI Bai Kaiyi, FENG Peng.Experimental study on the axial compressive behavior of GFRP tubular buckling-resistant reinforced channel steel members[J].Earthquake Resistant Engineering and Retrofitting, 2016, 38(4):100-107.(in Chinese)
[11] 赵青.热处理工艺对7075铝合金组织和力学性能的影响[D].郑州:郑州大学, 2012. ZHAO Qing.Effect of heat treatment process on microstructure and mechanical properties of 7075 aluminum alloy[D]. Zhengzhou:Zhengzhou University, 2012.(in Chinese)
[12] 朱永博, 杨湘杰, 桂云鹏.热挤压与热处理对半固态方法制备7075铝合金显微组织与拉伸性能的影响[J].机械工程材料, 2018, 42(1):39-43. ZHU Yongbo, YANG Xiangjie, GUI Yunpeng.Effects of hot extrusion and heat treatment on the microstructure and tensile properties of 7075 aluminum alloy prepared by semi-solid method[J].Mechanical Engineering Materials, 2018, 42(1):39-43.(in Chinese)
[13] JGJ/T101-2015建筑抗震试验规程[S].北京:中国建筑工业出版社, 2015. JGJ/T101-2015 Specification for Seismic Test of Buildings[S].Beijing:China Architecture&Building Press, 2015.(in Chinese)

相似文献/References:

[1]赵俊贤,吴斌.防屈曲支撑的工作机理及稳定性设计方法[J].地震工程与工程振动,2009,29(03):131.
 ZHAO Junxian,WU Bin.Working mechanism and stability design methods of buckling-restrained braces[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2009,29(01):131.
[2]赵学斐,王曙光,杜东升.高烈度区采用防屈曲支撑的钢框架结构优化设计及抗震性能评估[J].地震工程与工程振动,2014,34(03):197.[doi:10.13197/j.eeev.2014.03.197.zhaoxf.026]
 ZHAO Xuefei,WANG Shuguang,DU Dongsheng.Optimal design and seismic performance evaluation of BRB for steel frame structure in areas with high seismic intensity[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2014,34(01):197.[doi:10.13197/j.eeev.2014.03.197.zhaoxf.026]
[3]赵俊贤,李伟,吴斌,等.内芯板件局部屈曲幅值对耗能型防屈曲支撑滞回性能的影响[J].地震工程与工程振动,2014,34(04):168.[doi:10.13197/j.eeev.2014.04.168.zhaojx.022]
 ZHAO Junxian,LI Wei,WU Bin,et al.Effect of local buckling amplitude of steel core members on the hysteretic behavior of buckling-restraining braces[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2014,34(01):168.[doi:10.13197/j.eeev.2014.04.168.zhaojx.022]
[4]陈云,陈奕柏,蒋欢军,等.自复位耗能支撑研究进展[J].地震工程与工程振动,2014,34(05):239.[doi:10.13197/j.eeev.2014.05.239.cheny.030]
 CHEN Yun,CHEN Yibo,JIANG Huanjun,et al.Research progress in self-centering energy dissipating braces[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2014,34(01):239.[doi:10.13197/j.eeev.2014.05.239.cheny.030]
[5]马加路,张令心,陈永盛.从16WCEE会议看防屈曲支撑的未来发展趋势[J].地震工程与工程振动,2017,37(03):127.[doi:10.13197/j.eeev.2017.03.127.majl.014]
 MA Jialu,ZHANG Lingxin,CHEN Yongsheng.The future developing trends of buckling restrained braces from the 16WCEE[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2017,37(01):127.[doi:10.13197/j.eeev.2017.03.127.majl.014]

备注/Memo

备注/Memo:
收稿日期:2019-05-20;改回日期:2019-08-30。
基金项目:国家重点研发项目(2016YFC0701103);国家自然科学基金面上项目(51578114)
作者简介:霍林生(1975-),男,教授,博士,主要从事工程结构抗震及减振控制的研究.E-mail:lshuo@dlut.edu.cn
更新日期/Last Update: 1900-01-01