[1]周云,裴熠麟,刘蒙.基于非接触式麦克风冲击共振测试的钢-混组合结构界面脱空损伤识别方法研究[J].地震工程与工程振动,2020,40(01):067-79.[doi:10.13197/j.eeev.2020.01.67.zhouy.008]
 ZHOU Yun,PEI Yilin,LIU Meng.Non-contact diagnosis for interface debonding of steel-concrete composited structure by using impact resonance test with microphone[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2020,40(01):067-79.[doi:10.13197/j.eeev.2020.01.67.zhouy.008]
点击复制

基于非接触式麦克风冲击共振测试的钢-混组合结构界面脱空损伤识别方法研究
分享到:

《地震工程与工程振动》[ISSN:/CN:]

卷:
40
期数:
2020年01
页码:
067-79
栏目:
论文
出版日期:
2020-05-30

文章信息/Info

Title:
Non-contact diagnosis for interface debonding of steel-concrete composited structure by using impact resonance test with microphone
作者:
周云123 裴熠麟24 刘蒙25
1. 工程结构损伤诊断湖南省重点实验室, 湖南 长沙 410082;
2. 湖南大学 土木工程学院, 湖南 长沙 410082;
3. 绿色先进土木工程材料及应用技术湖南省重点实验室, 湖南 长沙 410082;
4. 湖南大学 建筑安全与节能教育部重点实验室, 湖南 长沙 410082;
5. 建筑安全与环境国际联合研究中心, 湖南 长沙 410082
Author(s):
ZHOU Yun123 PEI Yilin24 LIU Meng25
1. Hunan Provincial Key Laboratory of Damage Detection, Hunan University, Changsha 410082, China;
2. College of Civil Engineering, Hunan University, Changsha 410082, China;
3. Hunan Provincial Key Laboratory of Green Advanced Civil Engineering Materials and Application Technology, Changsha 410082, China;
4. Key Laboratory of Building Safety and Energy Efficiency of the Ministry of Education, Changsha 410082, China;
5. National Center for International Research Collaboration in Building Safety and Environment, Changsha 410082, China
关键词:
钢-混组合结构混凝土脱空损伤无损检测麦克风冲击共振非接触式
Keywords:
steel-concrete composited structuredebonding defectnon-destructive testmicrophoneimpact resonance testnon-contact test
分类号:
TU375.3
DOI:
10.13197/j.eeev.2020.01.67.zhouy.008
摘要:
针对现有无损检测技术在钢-混组合结构界面混凝土脱空损伤识别问题上普遍存在的测试成本高、识别精度有限及操作过程复杂等不足之处,提出了一种基于麦克风冲击共振测试的非接触式检测方法。首先,基于四边约束矩形薄板振动理论,将钢-混凝土板局部脱空处钢板简化为四边固支约束的板壳模型进行分析。通过在ABAQUS中建立考虑流-固耦合的钢-混凝土板有限元模型,将模拟所得脱空处钢板自振频率值与理论解析结果进行对比,证明该经验公式可有效适用于脱空区域处局部钢板自振频率的估计当中。其次,依据相关声学理论研究成果,利用所建立的有限元模型进行了外部激励下钢-混组合结构声压场信号分布特征研究,结果表明设置及未设置脱空损伤的有限元模型所产生的声压响应存在明显不同,且未脱空模型中信号响应具有幅值大、周期长等特征;同时,针对一钢-混凝土板设置了8种不同类型的损伤工况,并利用麦克风传感器分别进行了基于冲击共振测试的脱空损伤识别。试验结果表明,麦克风摆放位置对测试所得声压信号频响函数基本特征的影响程度并不显著;且针对本试验所设置的损伤工况,该方法基本均能实现有效识别,但对平面尺寸在60 mm以下区域的测试效果并不明显。最后,在对一特定损伤区域进行栅格化处理的基础上,通过开展基于麦克风冲击共振法的损伤成像测试,对该脱空区域的平面轮廓进行了有效识别。除此之外,将试验测试效果分别与传统红外热像检测法、超声波探测法进行了对比分析,验证了该麦克风冲击共振法能够较好地适用于钢-混组合结构的脱空损伤识别问题当中,且具有非接触式、测试成本低、识别效果显著及操作便捷等优点。
Abstract:
To distinguish the debonding defects of steel-concrete composited structure (SCCS), the existed non-destructive test (NDT) is generally thought with the problems of high tested costs, limited measurement accuracy, complicated operation process and etc. Therefore, this paper has introduced a non-contact NDT method by utilizing the impact resonance test with microphones. Firstly, the steel plate at the debonding defect of SCCS was treated as the clamped thin plate model based on the vibration theory, and the analytic value was validated by the finite element (FE) SCCS model with coupledfluid-solid consideration in ABAQUS program, showing that the empirical formula can be employed into the natural frequency predictions of this problem. Secondly, based on the theory of acoustic analysis, the FE model was utilized to research the distribution feature of acoustic waves under external excitations, and it was revealed that both of the type and transmission path of acoustic waves were significantly different between the debonding/non-debonding areas of the SCCS model, where the debonding signals were observed with the larger vibration amplitude and natural period. Meanwhile, the impact resonance test with microphone sensors was conducted for the SCCS with eight types of debonding defects. It was noticed that the basic characteristics of acoustic frequency response function (FRF) was not significantly influenced by the arrangement position of microphones, and the debonding defects can be well distinguished by the method except for the debonding defect with dimension less than 60 mm. Finally, the acoustic imaging analysis with microphones was conducted for a certain meshed debonding defect, and the outline of region can be roughly distinguished according to the test result. However, the experimental accuracy was dropped at the edge of debonding region, which can be improved with a denser mesh grid. Simultaneously, the test result was compared with the traditional infrared thermography method and the ultrasound method, and it was showed that the debonding defect of SCCS can be well distinguished by the impact resonance test with microphones, which has additionally employed the advantages of non-contact, lower costs, significantly precision and conventional operate process.

参考文献/References:

[1] 蔡文哲, 史庆轩, 王斌. 钢管混凝土构件轴向受拉机理和承载力研究[J]. 地震工程与工程振动, 2018, 38(4):126-133. CAI Wenzhe, SHI Qingxuan, WANG Bin. Research on the axial tensile mechanism and bearing capacity of concrete filled steel tube members[J]. Earthquake Engineering and Engineering Dynamics, 2018, 38(4):126-133. (in Chinese)
[2] 黄远, 黄登, 陈桂榕, 等. 钢管混凝土叠合柱抗震性能界限状态研究[J]. 地震工程与工程振动, 2018, 38(2):159-169. HUANG Yuan, HUANG Deng, CHEN Guirong, et al. Seismic performance limit states of steel tube-reinforced concrete columns[J]. Earthquake Engineering and Engineering Dynamics, 2018, 38(2):159-169. (in Chinese)
[3] Chen S M, Zhang H F. Numerical analysis of the axially loaded concrete filled steel tube columns with debonding separation at the steel-concrete interface[J]. Steel and Composite Structures, 2012, 13(3):277-293.
[4] 汪德江, 杨骁. 基于裂纹诱导弦挠度的Timoshenko梁裂纹无损检测[J]. 工程力学, 2016(12):191-200. WANG Dejiang, YANG Xiao. Crack non-destructive test in Timoshenko beams based on crack-induced chord-wise deflection[J]. Engineering Mechanics, 2016(12):191-200. (in Chinese)
[5] 张宏, 余钱华, 吕毅刚. 超声透射法检测钢管拱桥拱肋混凝土质量应用研究[J]. 土木工程学报, 2004, 37(8):50-53. ZHANG Hong, YU Qianhua, LV Yigang. Application study of quality testing of the arch-rib concrete of concrete-filled steel tube arch bridge by ultrasonic transmission method[J]. China Civil Engineering Journal, 2004, 37(8):50-53.(in Chinese)
[6] 刘清元, 熊章绪. 两种测试钢管混凝土内部缺陷的判别方法[J]. 武汉理工大学学报, 2005, 27(6):38-40. LIU Qingyuan, XIONG Zhangxu. Two methods of testing defect in concrete-filled steel tubular[J]. Journal of Wuhan University of Technology, 2005, 27(6):38-40. (in Chinese)
[7] 丁睿. 钢管混凝土拱桥健康监测的光纤传感研究[J]. 土木工程学报, 2005, 38(11):69-74. DING Rui. Research on fiber sensing of health monitoring for steel tube-confined concrete arch bridge[J]. China Civil Engineering Journal, 2005, 38(11):69-74.(in Chinese)
[8] Kweon G, Kim Y. Determination of asphalt concrete complex modulus with impact resonance test[J]. Journal of the Transportation Research Record, 2006, 1970(1):151-160.
[9] Lesnicki K J, Kim J Y, Kurtis K E, et al. Characterization of ASR damage in concrete using nonlinear impact resonance acoustic spectroscopy technique[J]. NDT&E International, 2011, 44(8):721-727.
[10] Bodnar J L, Nicolas J L, Candore J C, et al. Non-destructive testing by infrared thermography under random excitation and ARMA analysis[J]. International Journal of Thermophysics, 2012, 33(10):2011-2015.
[11] 许斌, 李冰, 宋刚兵,等. 基于压电陶瓷的钢管混凝土柱剥离损伤识别研究[J]. 土木工程学报, 2012(7):86-96. XU Bin, LI Bing, SONG Gangbing, et al. Detection of the debonding defect of concrete-filled steel tubes with piezoceramics[J]. China Civil Engineering Journal, 2012(7):86-96.(in Chinese)
[12] 赵海亮.基于局部瞬态激励钢砼界面脱空实验研究[D]. 大连:大连理工大学, 2014. ZHAO Hailiang. The experimental research of the void at the interface of the concrete-filled steel tube based on the transient excitation[D]. Dalian:Dilian University of Technology, 2014. (in Chinese)
[13] Rachael C, Tighe, Janice M, et al. Identification of kissing defects in adhesive bonds using infrared thermography[J]. International Journal Adhesion and Adhesives, 2016, 64:168-178.
[14] 杨金.基于HHT的钢管混凝土缺陷特征提取研究与FPGA实现[D].湘潭:湖南科技大学, 2016. YANG Jin. Feature extraction from concrete-filled steel tube using HHT and FPGA implementation[D]. Xiangtan:Hunan University of Science and Technology, 2016. (in Chinese)
[15] 朱亚林, 李端洲, 汪正兴, 等. 混合梁斜拉桥钢混结合段脱空识别方法研究[J]. 合肥工业大学学报(自然科学版), 2017(7):933-937. ZHU Yalin, LI Duanzhou, WANG Zhengxing, et al. Study of identification method of steel-concrete joint section void of hybrid girder cable-stayed bridge[J]. Journal of Hefei University of Technology, 2017(7):933-937.
[16] Gan T H, Hutchins D A, Billson D R, et al. The use of broadband acoustic transducers and pulse-compression techniques for air-coupled ultrasonic imaging[J]. Ultrasonics, 2001, 39(3):181-194.
[17] Zhu J, Popovics J. Non-contact detection of surface waves in concrete using an air-coupled sensor[C]//AIP Conference Proceedings, 2002.
[18] Berriman J, Purnell P, Hutchins D A, et al.Humidity and aggregate content correction factors for air-coupled ultrasonic evaluation of concrete[J]. Ultrasonics, 2005, 43(4):211-217.
[19] Kee S H, Zhu J. Using air-coupled sensors to determine the depth of a surface-breaking crack in concrete[J]. Journal of the Acoustical Society of America, 2010, 127(3):1279-1287.
[20] Shin S W, Popovics J S, Oh T. Cost effective air-coupled impact-echo sensing for rapid detection of delamination damage in concrete structures[J]. Advances in Structural Engineering, 2012, 15(6):887-895.
[21] Kim G, Kim J Y, Kurtis K E, et al.Quantitative evaluation of carbonation in concrete using nonlinear ultrasound[J]. Materials & Structures, 2016, 49(1):399-409.
[22] Liao F Y, Han L H, He S H. Behavior of CFST short column and beam with initial concrete imperfection:experiments[J]. Journal of Constructional Steel Research, 2011, 67(12):1922-1935.
[23] Oh T, Popovics J S. Practical visualization of local vibration datacollected over large concrete elements[J]. Computer-aided Civil and Infrastructure Engineering, 2015, 30:68-81.
[24] Oh T, Popovics J S. Application of impact resonance C-scan stack images to evaluate bridge deck conditions[J]. Journal of Infrastructure Systems, 2015, 21(1):04014029-1-8.
[25] Zou Y, Tong L, Steven G P. Vibration-based model-dependent damage (delamination) identification and health monitoring for compositestructures-a review[J]. Journal of Sound and Vibration, 2000(23):357-378.
[26] Oh T, Popovics J S, Sim S H.Analysis of vibration for regions above rectangular delamination defects in solids[J]. Journal of Sound and Vibration, 2013, 332(7):1766-1776.
[27] Hazell C R, Mitchell A K. Experimental eigenvalues and mode shapes for flat clamped plates[J]. Experimental Mechanics, 1986, 26(3):209-216.
[28] Mitchell A K, Hazell C R. A simple frequency formula for clamped rectangular plates[J]. Journal of Sound and Vibration, 1987, 118(2):271-281.
[29] Ham S, Song H, Oelze M L, et al. A contactless ultrasonic surface wave approach to characterize distributed cracking damage in concrete[J]. Ultrasonics, 2017, 75:46-57.
[30] Mercier J F. Mathematical modeling of time-harmonic aeroacoustics with a generalized impedance boundary condition[J]. Esaim Mathematical Modelling & Numerical Analysis, 2014, 48(5):1529-1555.
[31] Schimizze B, Son S F, Goel R, et al. An experimental and numerical study of blast induced shock wave mitigation in sandwich structures[J]. Applied Acoustics, 2013, 74(1):1-9.
[32] Rayleigh J W. The theory of sound[M]. Dover Publications, 1945.

备注/Memo

备注/Memo:
收稿日期:2019-03-05;改回日期:2019-06-14。
基金项目:国家重点研发计划专项项目(2016YFC0701400,2016YFC0701308);湖南省重点研发计划项目(2017SK2220);国家自然科学基金项目(51878264)
作者简介:周云(1979-),男,教授,博士,主要从事结构无损检测及健康监测方面研究.E-mail:zhouyun05@hnu.edu.cn
更新日期/Last Update: 1900-01-01