[1]吴文朋,周权,张红运,等.桥梁结构抗震挡块的研究现状与展望[J].地震工程与工程振动,2020,40(01):103-120.[doi:10.13197/j.eeev.2020.01.103.wuwp.011]
 WU Wenpeng,ZHOU Quan,ZHANG Hongyun,et al.Research review and prospect of the anti-seismic retaining block for the bridge structures[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2020,40(01):103-120.[doi:10.13197/j.eeev.2020.01.103.wuwp.011]
点击复制

桥梁结构抗震挡块的研究现状与展望
分享到:

《地震工程与工程振动》[ISSN:/CN:]

卷:
40
期数:
2020年01
页码:
103-120
栏目:
论文
出版日期:
2020-05-30

文章信息/Info

Title:
Research review and prospect of the anti-seismic retaining block for the bridge structures
作者:
吴文朋 周权 张红运 龙士国
湘潭大学 土木工程与力学学院, 湖南 湘潭 411105
Author(s):
WU Wenpeng ZHOU Quan ZHANG Hongyun LONG Shiguo
College of Civil Engineering and Mechanics, Xiangtan University, Xiangtan 411105, China
关键词:
桥梁工程抗震挡块装配式设计方法综述
Keywords:
bridge engineeringanti-seismic retaining blockfabricateddesign methodreview
分类号:
U442.55
DOI:
10.13197/j.eeev.2020.01.103.wuwp.011
摘要:
综述了桥梁抗震挡块的几类典型结构形式,对常见挡块的实际震害形式、破坏机理以及力学分析模型的研究现状进行了分析,归纳总结了不同规范中桥梁抗震挡块的设计方法。对当前挡块抗震研究和设计中存在的问题进行了分析和讨论,并提出了一种新型的预应力装配式超高性能混凝土(UHPC)挡块形式。研究结果表明:传统整体式混凝土挡块的主要破坏模式为斜剪和平剪破坏,既有试验中已对两种模式的破坏机理进行了较深入的研究;相比传统整体式混凝土挡块,滑移型混凝土挡块和弹塑性钢挡块在抗震设计中更具可控性,值得进一步在国内推广和应用;美国规范按挡块类型分别给出了不同的设计策略,并对挡块的承载力计算方法和配筋形式进行了说明,值得我国桥梁抗震设计规范借鉴;提出的装配式UHPC挡块具有传力简单明确、自复位和震后修复更换方便等特点,可作为我国中小跨径桥梁结构抗震挡块设计及加固的一种有益补充,值得进一步展开深入的研究。
Abstract:
This study reviewed the typical structural forms of the anti-seismic retaining blocks for the bridges. The seismic failure modes, damage mechanisms and mechanical models of the common used retaining blocks were analyzed. The seismic design methods of the retaining blocks in different seismic design specifications were summarized. The existing problems in the seismic research and the seismic design of the retaining blocks of the bridge structures were analyzed and discussed. Then, a new type of prestressed prefabricated ultra-high performance concrete (UHPC) retaining block was proposed in this paper. The results show that the main failure modes of the traditional integral concrete retaining blocks are the diagonal shear failure and the sliding shear failure. Previous experimental research has investigated the failure mechanism of the above two failure modes. Compared with the integral concrete retaining blocks, the sliding concrete retaining block and the elastoplastic steel retaining block are more controllable in seismic design of the bridge. Therefore, it is worthy of popularization and application in China. The America’s seismic design criteria provides different design strategies according to the types of retaining blocks. Moreover, the calculation method of the bearing capacity and the reinforcement form of the retaining blocks are described in detail. It is worthy of reference for China’s seismic design criteria. The proposed prefabricated UHPC retainer has the advantages of load path clearly, self-centering and easy repairing after the earthquake, etc. Therefore, it can be used as a beneficial supplement to the seismic design and retrofitting of the anti-seismic retaining block of the media-small span bridges in China, and is worth further research.

参考文献/References:

[1] 管仲国, 李建中. 城市高架桥合理抗震体系选择与经济性对比[J]. 地震工程与工程振动, 2011, 31(3):91-98. GUAN Zhongguo, LI Jianzhong. Structural performance and cost comparison of different seismic resisting systems for urban expressway viaducts[J]. Earthquake Engineering and Engineering Dynamics, 2011, (3):91-98. (in Chinese)
[2] AASHTO. Guide specifications for LRFD seismic bridge design, 2nd edition[S]. American Association of State Highway and Transportation Officials:Washington D C, 2011.
[3] 王克海. 桥梁抗震研究[M].2版.北京:中国铁道出版社, 2014. WANG Kehai. Research on seismic resistance of bridges[M]. 2nd ed.Beijing:China Railway Publishing House, 2014. (in Chinese)
[4] 王克海, 韦韩, 李茜等. 中小跨径公路桥梁抗震设计理念[J]. 土木工程学报, 2012, 45(9):115-121. WANG Kehai, WEI Han, LI Qian, et al. Philosophies on seismic design of highway bridges of small or medium spans[J]. China Civil Engineering Journal, 2012, 45(9):115-121. (in Chinese)
[5] 陈乐生. 汶川地震公路震害调查-桥梁[M].北京:人民交通出版社, 2012. CHEN Lesheng. Report on highway’s damage in the wenchuan earthquake-bridge[M]. Beijing:China Communications Press, 2012. (in Chinese)
[6] GOEL R K, CHOPRA A K. Role of shear keys in seismic behavior of bridges crossing fault-rupture zones[J]. Journal of Bridge Engineering, 2008, 13(4):398-408.
[7] 石岩, 王军文, 秦洪果等. 桥梁抗震挡块研究进展[J]. 世界地震工程, 2013, 29(2):90-95. SHI Yan, WANG Junwen, QIN Hongguo, et al. Review of recent development in seismic shear keys of bridges[J]. World Earthquake Engineering, 2013, (2):90-95. (in Chinese)
[8] JTG/TB02-012008公路桥梁抗震设计细则[S].北京:人民交通出版社, 2008. JTG/TB02-01-2008 Guidelines for Seismic Design of Highway Bridges[S]. Beijing:China Communication Press, 2008. (in Chinese)
[9] CJJ166-2011城市桥梁抗震设计规范[S].北京:中国建筑工业出版, 2011. CJJ166-2011 Code for Seismic Design of Urban Bridges[S]. Beijing:China Architecture & Building Press, 2011. (in Chinese)
[10] 庄卫林,陈乐生. 汶川地震公路震害分析-桥梁与隧道[M]. 北京:人民交通出版社, 2013. ZHUANG Weilin, CHEN Lesheng. Analysis of highways’ damage in the wenchuan earthquake-bridge and tunnel[M]. Beijing:China Communications Press, 2013. (in Chinese)
[11] 王克海, 惠迎新, 吴刚. 新型双层抗震挡块抗震性能研究[J]. 地震工程与工程振动, 2014, 34(增刊):505-510. WANG Kehai, HUI Yingxin, WU Gang. Study on seismic performance of seismic double-layer stopper[J]. Earthquake Engineering and Engineering Dynamics. 2014(s1):505-510. (in Chinese)
[12] 李建中, 汤虎, 管仲国. 中小跨径板式橡胶支座梁桥新型隔震系统[J]. 中国公路学报, 2015, 28(3):35-43. LI Jianzhong, TANG Hu, GUAN Zhongguo. A new isolation system for small and medium span bridges on laminated rubber bearings[J]. China Journal of Highway and Transport, 2015, 28(3):35-43. (in Chinese)
[13] 杜修力, 周雨龙, 韩强, 等. 公路桥梁外剪力键研究进展[J]. 地震工程与工程振动, 2015, 35(5):1-7. DU Xiuli, ZHOU Yulong, HAN Qiang, et al. Research progress on exterior shear key of highway bridges[J]. Earthquake Engineering and Engineering Dynamics, 2015, 35(5):1-7. (in Chinese)
[14] 范立础, 胡世德. 橡胶减震挡块:CN 96230818.4[P]. 1997-08-27. FAN Lichu, HU Shide. Rubber isolation shear key, CN 96230818.4[P]. 1997-08-27. (in Chinese)
[15] BHUIYAN A R, ALAM M S. Seismic performance assessment of highway bridges equipped with superelastic shape memory alloy-based laminated rubber isolation bearing[J]. Engineering Structures, 2013, 49(2):396-407.
[16] VASSEGHI A. Energy dissipating shear key for precast concrete girder bridges[J]. Scientia Iranica, 2011, 18(3):296-303.
[17] 刘笑显, 李建中, 陈旭. X形弹塑性钢挡块对简支梁桥横向地震反应影响[J]. 振动与冲击, 2015, 34(2):143-149. LIU Xiaoxian, LI Jianzhong, CHEN Xu. Effects of X-shaped elastic-plastic steel shear keys on transverse seismic responses of a simply-supported girder bridge[J]. Journal of Vibration and Shock, 2015, 34(2):143-149.(in Chinese)
[18] LI Jianzhong, XIANG Nailiang, TANG Hu, et al. Shake-table tests and numerical simulation of an innovative isolation system for highway bridges[J]. Soil Dynamics and Earthquake Engineering, 2016, 86:55-70.
[19] 邓开来, 潘鹏, 冉田苒, 等. 耗能型桥梁抗震挡块试验研究[J]. 振动与冲击, 2014, 33(22):7-12. DENG Kailai, PAN Peng, RAN Tianran, et al. Experimental study of energy dissipation stopper for bridge[J]. Journal of Vibration and Shock, 2014, 33(22):7-12. (in Chinese)
[20] DENG Kailai, PAN Peng, SU Yukun, et al. Development of an energy dissipation restrainer for bridges using a steel shear panel[J]. Journal of Constructional Steel Research, 2014, 101(101):83-95.
[21] 汤振辉. 桥梁抗震钢挡块计算方法与实验研究[D].重庆:重庆交通大学, 2015. TANG Zhenhui. Experimental study and calculation method on bridge seismic stoppers[D]. Chonqing:Chongqing Jiaotong University, 2015. (in Chinese)
[22] BOZORGZADEH A, MEGALLY S, RESTREPO J I, et al. Capacity evaluation of exterior sacrificial shear keys of bridge abutments[J]. Journal of Bridge Engineering, 2006, 11(5):555-565.
[23] BOZORGZADEH A, MEGALLY S, RESTREPO J I, et al. Seismic response and capacity evaluation of sacrificial exterior shear keys in bridge abutments[C]//in 13th World Conference on Earthquake Engineering. 2004. Vancouver, B.C., Canada.
[24] CALTRANS. Seismic design criteria, version 1.7[S]. California department of Transportation:Sacramento, Califronia, 2013.
[25] 徐略勤, 李建中. 钢筋混凝土挡块抗震性能及改进试验[J]. 中国公路学报, 2014, 27(9):41-48. XU Lueqin, LI Jianzhong. Experiment on seismic performance and its improvement of reinforced concrete retainers[J]. China Journal of Highway and Transport, 2014, 27(9):41-48. (in Chinese)
[26] 徐略勤, 李建中. 新型滑移挡块的设计、试验及防震效果研究[J]. 工程力学, 2016, 33(2):111-118. XU Lueqin, LI Jianzhong. Design and experimental investigation of a new type sliding retainer and its efficacy in seismic fortification[J]. Engineering Mechanics, 2016, 33(2):111-118. (in Chinese)
[27] 项乃亮, 李建中. 不同挡块形式对中小跨径梁桥横向抗震性能的影响[J]. 工程力学, 2016, 33(3):188-195. XIANG Nailiang, LI Jianzhong. Effect of different types of retainers on transverse seismic performance of small and mid-span girder bridges[J]. Engineering Mechanics, 2016, 33(3):188-195. (in Chinese)
[28] 许祥, 刘伟庆, 徐秀丽. 新型抗震挡块的抗震性能[J]. 东南大学学报(自然科学版), 2009, 39(增刊):165-168. XU Xiang, LIU Weiqing, XU Xiuli. Seismic performance of new side retainer[J]. Journal of Southeast University (Natural Science Edition), 2009, 39(S):165-168. (in Chinese)
[29] LI Jianzhong, PENG Tianbo, XU Yan. Damage investigation of girder bridges under the wenchuan earthquake and corresponding seismic design recommendations[J]. Earthquake Engineering and Engineering Vibration, 2008, 7(4):337-344.
[30] MOEHLE J. Highway bridges and traffic management[J]. Earthquake Spectra, 1995, 11(Suppl 2):287-372.
[31] SCHANACK F, VALDEBENITO G, ALVIAL J. Seismic damage to bridges during the 27 february 2010 magnitude 8.8 chile earthquake[J]. Earthquake Spectra, 2012, 28(1):301-315.
[32] KAZUHIKOKAWASHIMA, SHIGEKIUNJOH, JUN-ICHIHOSHIKUMA, et al. Damage of bridges due to the 2010 maule, chile, earthquake[J]. Journal of Earthquake Engineering, 2011, 15(7):1036-1068.
[33] BOZORGZADEH A, MEGALLY S, RESTREPO J I, et al. Seismic response of sacrificial exterior shear keys in bridge abutments[R]. 2007:Department of Structural Engineering, University of California, San Diego La Jolla, California 92093-0085.
[34] SILVA P F, MEGALLY S, SEIBLE F. Performance of sacrificial exterior shear keys under simulated seismic loading[C]//in Proceedings of the 5th ACI International Conference, 2002, Cancun, Mexico
[35] SILVA P F, MEGALLY S, and SEIBLE F. Seismic performance of sacrificial exterior shear keys in bridge abutments[J]. Earthquake Spectra, 2009, 25(3):643-664.
[36] KOTTARI A. Horizontal Load resisting mechanisms of external shear keys in bridge abutments[D]. State of California:VC San Diego, 2016.
[37] 郑万山, 唐光武. 桥梁抗震挡块拟静力试验研究[J]. 公路交通技术, 2013(4):54-58. ZHENG Wanshan,TANG Guangwu. Quasi-static test research on seismic blocks of bridges[J]. Technology of Highway and Transport, 2013(4):54-58. (in Chinese)
[38] 徐略勤, 李建中. 基于转动刚体模型的钢筋混凝土挡块抗震强度预测[J]. 工程力学, 2014, 31(10):143-150. XU Lueqin, LI Jianzhong. Seismic strength prediction of reinforced concrete retainers based on rigid body rotation model[J]. Engineering Mechanics, 2014, 31(10):143-150. (in Chinese)
[39] 徐略勤, 李建中. 基于修正滑移刚体模型的挡块抗震强度预测及其应用[J]. 振动与冲击, 2014, 33(17):55-61. XU Lueqin, LI Jianzhong. Seismic strength prediction and its application of reinforced concrete retainers based on modified rigid body sliding model[J]. Journal of Vibration and Shock, 2014, 33(17):55-61. (in Chinese)
[40] 徐略勤, 李建中. 可牺牲抗震挡块的两水准设计方法[J]. 中国公路学报, 2015, 28(10):59-66. XU Lueqin, LI Jianzhong. Dual-level design method of sacrificial aseismic retainers[J]. China Journal of Highway and Transport, 2015, 28(10):59-66. (in Chinese)
[41] 徐梁晋. 地震及超高车辆撞击下功能可恢复混凝土连续梁桥研究[D].北京:清华大学, 2016. XU Liangjin. Research on resilient concrete continuous bridges under earthquake and over-height truck collision[D]. Beijing:Tsinghua University, 2016. (in Chinese)
[42] HAN Qing, HU Menghan, WEN Jianian, et al. Seismic capacity evaluation of interior shear keys for highway bridges[J]. Journal of Earthquake Engineering, 2018,DOI:10.1080/13632469.2018.1453414.
[43] HAN Qing, HU Menghan, ZHOU Yulong, et al. Seismic performance of interior shear keys of highway bridges[J]. ACI Structural Journal, 2018, 115(4).1011-1021.
[44] HAN Qing, ZHOU Yulong, OU Yuchen, et al. Seismic behavior of reinforced concrete sacrificial exterior shear keys of highway bridges[J]. Engineering Structures, 2017, 139:59-70.
[45] HAN Qing, ZHOU Yulong, ZHONG Zilan, et al. Seismic capacity evaluation of exterior shear keys of highway bridges[J]. Journal of Bridge Engineering, 2016, 22(2):04016119.
[46] 刘柯, 韩强, 周雨龙等. 可复位桥梁外剪力键性能试验及承载能力评估[J]. 工程力学, 2016, 33(9):171-178. LIU Ke, HAN Qiang, ZHOU Yulong, et al. Behavior experiment and capacity evaluation of resilient exterior shear key of bridges[J]. Engineering Mechanics, 2016, 33(9):171-178. (in Chinese)
[47] MEGALLY S, SILVA P F. Seismic performance of sacrificial interior shear keys[J]. ACI Structural Journal, 2003, 100(2):177-187.
[48] MEGALLY S, F SILVA P, SEIBLE F. Seismic response of sacrificial shear keys in bridge abutments[R]. La Jolla:University of California, San Diego,2001.
[49] XIA C, HANSON R D. Influence of ADAS element parameters on building seismic response[J]. Journal of Structural Engineering, 1992, 118(7):1903-1918.
[50] PERRY C L, FIERRO E A, SEDARAT H, et al. Seismic upgrade in san francisco using energy dissipation devices[J]. Earthquake Spectra, 1993, 9(3):559-579.
[51] 李建中,汤虎. 中小跨径板式橡胶支座梁桥横向抗震设计研究[J]. 土木工程学报, 2016,49(11):69-78. LI Jianzhong, TANG Hu. Study on transverse seismic design of small and medium span bridges with elastomeric bearing pads[J]. China Civil Engineering Journal, 2016,49(11):69-78. (in Chinese)
[52] BI K, HONG H. Modelling of shear keys in bridge structures under seismic loads[J]. Soil Dynamics & Earthquake Engineering, 2015, 74:56-68.
[53] MALEKI S. Seismic modeling of skewed bridges with elastomeric bearings and side retainers[J]. Journal of Bridge Engineering, 2005, 10(4):442-449.
[54] 聂利英, 李建中, 范立础. 地震作用下结构碰撞的模型参数及其影响分析[J]. 工程力学, 2005, 22(5):142-146. NIE Liying, LI Jianzhong, FAN Lichu. Selection of pounding analysis parameters and its effects on structure under earthquake[J]. Engineering Mechanics, 2005, 22(5):142-146. (in Chinese)
[55] 沈贤, 王军文, 李建中等. 地震作用下斜交简支梁桥桥面旋转反应的参数分析[J]. 振动与冲击, 2015, 34(5):61-65. SHEN Xian, WANG Junwen, LI Jianzhong, et al. Parametric analysis on the deck’s inplane rotation responses of simply-supported skewed girder bridges under ground motions[J]. Journal of Vibration and Shock, 2015, 34(5):61-65. (in Chinese)
[56] KAVIANI P, ZAREIAN F, TACIROGLU E. Seismic behavior of reinforced concrete bridges with skew-angled seat-type abutments[J]. Engineering Structures, 2012, 45:137-150.
[57] WILCHES ESTAN J, SANTA MARIA H, RIDDELL R, et al. Influence of the use of external shear keys on the seismic behavior of chilean highway bridges[J]. Engineering Structures, 2017, 147:613-624.
[58] XIANG Nailiang, LI Jianzhong. Effect of exterior concrete shear keys on the seismic performance of laminated rubber bearing-supported highway bridges in China[J]. Soil Dynamics & Earthquake Engineering, 2018, 112:185-197.
[59] WU Gang, Wang Kehai, Zhang Panpan, et al. Effect of mechanical degradation of laminated elastomeric bearings and shear keys upon seismic behaviors of small-to-medium-span highway bridges in transverse direction[J]. Earthquake Engineering & Engineering Vibration, 2018, 17(1):205-220.
[60] SCDOT. Seismic design specifications for highway bridges, version 2.0[S]. South Carolina Department of Transportation, 2008, Columbia, SC.
[61] 阪神高速公路株式会社著. 桥梁抗震与加固-从灾后应急修复到抗震维修加固[M]. 向上, 张建东,译. 北京:中国建筑工业出版社, 2013 HANSHIN EXPRESSWAY COMPANY. XIANG Shang, Seismic and retrofit of bridges-from post-disaster emergency repair to seismic maintenance and reinforcement[M]. ZHANG Jiandong, translated.Beijing:China Architecture & Building Press, 2013. (in Chinese)
[62] GB 50111-2006. 铁路工程抗震设计规范(2009年版)[M].北京:中国计划出版社, 2009. GB 50111-2006. Code for seismic design of railway engineering (Version 2009)[M]. Beijing:China Planning Press, 2009.
[63] RICHARD P and CHEYREZY M. Reactive powder concretes with high ductility and 200-800 MPa compressive strength[J]. ACI Special Publication, 1994, 114:507-518.
[64] AFROUGHSABET V, BIOLZI L, OZBAKKALOGLU T. High-performance fiber-reinforced concrete:a review[J]. Journal of Materials Science, 2016, 51(14):6517-6551.
[65] 邵旭东, 胡建华. 钢-超高性能混凝土轻型组合桥梁结构[M].北京:人民交通出版社,2015. SHAO Xudong, HU Jianhua. The steel-UHPC lightweight composite bridge structures[M]. Beijing:China Communications Press, 2015. (in Chinese)
[66] 邵旭东, 邱明红, 晏班夫, 等. 超高性能混凝土在国内外桥梁工程中的研究与应用进展[J]. 材料导报, 2017, 31(23):33-43. SHAO Xudong, Qiu Minghong, YAN Banfu, et al. A review on the research and application of ultra-high performance concrete in bridge engineering around the world[J]. Materials Review, 2017, 31(23):33-43. (in Chinese)
[67] SU Yu, WU Chengqing, LI Jun, et al. Development of novel ultra-high performance concrete:from material to structure[J]. Construction & Building Materials, 2017, 135:517-528.
[68] ABBAS S, NEHDI M L, SALEEM M A. Ultra-high performance concrete:mechanical performance, durability, sustainability and implementation challenges[J]. International Journal of Concrete Structures & Materials, 2016, 10(3):271-295.
[69] WU Wenpeng, LONG Shiguo, LI Huiui. Seismic performance of self-centering UHPC retainers applied to medium-amall span concrete bridges[C]//2019 IABSE Congress New York City, New York, 2019.9, 9:2044-2048.

相似文献/References:

[1]石春香,李胡生,林立.考虑刚度及边界条件的短索索力求解与试验研究[J].地震工程与工程振动,2010,30(02):086.
 SHI Chunxiang,LI Husheng,LIN Li.Practical solving method and experimental study for short cable tension in consideration of cable stiffness and boundary conditions[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2010,30(01):086.
[2]刘凡,袁晓静.钢筋混凝土柔性墩柱抗震性能的试验研究[J].地震工程与工程振动,2010,30(03):059.
 LIU Fan,YUAN Xiaojing.Experimental study on seismic performance of reinforced concrete flexible piers with round section[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2010,30(01):059.
[3]赵青,肖卓.行波效应对连续曲线箱梁桥地震反应的影响[J].地震工程与工程振动,2010,30(03):123.
 ZHAO Qing,XIAO Zhuo.Effects of traveling wave on seismic responses of continuous curved box-girders bridge[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2010,30(01):123.
[4]郑越,陈兴冲.考虑基础提离与塑性的桥墩地震反应[J].地震工程与工程振动,2009,29(04):125.
 ZHENG Yue,CHEN Xingchong.Seismic response of double-column bridge piers considering uplift and yield of foundation[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2009,29(01):125.
[5]武芳文,赵雷.地震动空间变异性对千米级斜拉桥结构随机地震反应的影响[J].地震工程与工程振动,2009,29(05):118.
 WU Fangwen,ZHAO Lei.Influence of spatial variation of seismic ground motion on thousand-meter scale cable-stayed bridge[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2009,29(01):118.
[6]燕斌,杜修力,韩强,等.多阶段抗震设计理论与实践研究[J].地震工程与工程振动,2013,33(05):241.
 YAN Bin,DU Xiuli,HAN Qiang,et al.Study on multi-stage seismic design theory and practice[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2013,33(01):241.
[7]杜修力,韩强.桥梁抗震研究若干进展[J].地震工程与工程振动,2014,34(04):001.[doi:10.13197/j.eeev.2014.04.1.duxl.001]
 DU Xiuli,HAN Qiang.Research progress on seismic design of bridges[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2014,34(01):001.[doi:10.13197/j.eeev.2014.04.1.duxl.001]
[8]雷虎军,李小珍,刘德军.地震作用下高墩刚构桥行车安全性分析[J].地震工程与工程振动,2014,34(05):087.[doi:10.13197/j.eeev.2014.05.87.leihj.012]
 LEI Hujun,LI Xiaozhen,LIU Dejun.Train running safety analysis of high-pier rigid frame bridge under earthquake action[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2014,34(01):087.[doi:10.13197/j.eeev.2014.05.87.leihj.012]
[9]李立峰,胡思聪,王连华,等.超高墩多塔混凝土斜拉桥纵向约束体系研究[J].地震工程与工程振动,2015,35(01):085.[doi:10.13197/j.eeev.2015.01.85.lilf.011]
 LI Lifeng,HU Sicong,WANG Lianhua,et al.Longitudinal constraint systems for super high-pier multi-span concrete cable-stayed bridges[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2015,35(01):085.[doi:10.13197/j.eeev.2015.01.85.lilf.011]
[10]吴文朋,李立峰,胡思聪.近场地震作用下支座布置对连续梁桥的抗震性能影响分析[J].地震工程与工程振动,2015,35(04):155.[doi:10.13197/j.eeev.2015.04.155.wuwp.018]
 WU Wenpeng,LI Lifeng,HU Sicong.Effects of the bearing arrangement on seismic performance of continuous girder bridges under near-fault ground motions[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2015,35(01):155.[doi:10.13197/j.eeev.2015.04.155.wuwp.018]

备注/Memo

备注/Memo:
收稿日期:2019-05-11;改回日期:2019-09-27。
基金项目:国家自然科学基金项目(51908481);中国博士后科学基金项目(2018M640756);湖南省科技重大专项(2017SK1010);湖南省教育厅科学研究项目(18C0099)
作者简介:吴文朋(1985-),男,副教授,博士,主要从事桥梁抗震研究.E-mail:wuwenpeng@xtu.edu.cn
通讯作者:龙士国(1972-),男,教授,博士,主要从事结构防灾减灾和工程质量智能监测方面的研究.E-mai
更新日期/Last Update: 1900-01-01