[1]周逸飞,刘汉香,朱星,等.含软弱夹层岩质边坡的模态分析及其对边坡地震动力响应影响的初步研究[J].地震工程与工程振动,2020,40(01):223-232.[doi:10.13197/j.eeev.2020.01.223.zhouyf.022]
 ZHOU Yifei,LIU Hanxiang,ZHU Xing,et al.Modal analysis of rock slope with a weak interlayer and its influence on seismic dynamic response of slope[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2020,40(01):223-232.[doi:10.13197/j.eeev.2020.01.223.zhouyf.022]
点击复制

含软弱夹层岩质边坡的模态分析及其对边坡地震动力响应影响的初步研究
分享到:

《地震工程与工程振动》[ISSN:/CN:]

卷:
40
期数:
2020年01
页码:
223-232
栏目:
论文
出版日期:
2020-05-30

文章信息/Info

Title:
Modal analysis of rock slope with a weak interlayer and its influence on seismic dynamic response of slope
作者:
周逸飞 刘汉香 朱星 文佳豪
成都理工大学 地质灾害防治与地质环境保护国家重点试验室, 四川 成都 610059
Author(s):
ZHOU Yifei LIU Hanxiang ZHU Xing WEN Jiahao
State Key Laboratory of Geohazards Prevention and Geoenviroment Protection, Chengdu University of Technology, Chengdu 610059, China
关键词:
边坡ANSYS模态分析固有频率振型振动台试验
Keywords:
slopemodal analysisnatural frequencyvibration modeshaking table test
分类号:
TU45
DOI:
10.13197/j.eeev.2020.01.223.zhouyf.022
摘要:
本文以含软弱夹层岩质边坡作为研究对象,基于数值软件ANSYS的模态分析给出了含不同倾角与厚度软弱夹层边坡的前5阶固有频率与振型,并分析了夹层倾角和厚度对边坡固有模态的影响。接着,结合已有的大型振动台模型试验结果,在小应变范围内讨论了边坡的固有模态与其动力响应特性之间的关系。结果表明:(1)在夹层倾角相同时,含较厚软弱夹层边坡固有频率低于含较薄软弱夹层边坡;(2)在夹层厚度相同时,随着倾角增加,夹层从反倾变化到顺倾,低阶(1、2)固有频率也逐渐增加,而高阶(3、4、5)固有频率则呈下降趋势;(3)从第3、4阶开始,边坡变形受夹层影响增强;(4)基于加速度傅里叶谱比分析得出的边坡响应放大频率与边坡前5阶固有频率范围接近,加速度和位移响应在夹层及以上部位响应强烈,与边坡前5阶振型较为一致,预示了边坡的共振响应。需要指出的是,本文得出的结论尚且不能用于准确解释边坡在大变形及破坏阶段的动力响应特征,但可为边坡动力特性及共振响应的深入研究提供思路。
Abstract:
Based on modal analysis of the rock slope with a weak interlayer with software ANSYS, the first five order natural frequencies and modes of the slope were calculated, and the influence of the dip angle and thickness of the weak interlayer on the natural modes of the slope was analyzed. Then the relationship between the natural modes of the slope and its dynamic response was discussed based on the completed large-scale shaking table model test. The results show that:(1) with the same dip angle of the interlayer, the natural frequency of a slope with a thicker weak interlayer is lower than that of a slope with a thinner weak interlayer; (2) with the same interlayer thickness, the natural frequencies of low-order (1st, 2nd) modes increase as the dip angle is increased and the interlayer changes from anti-dipping to consequent, while the natural frequencies of high-order (3rd, 4th, 5th) modes decrease gradually; (3) since from the 3rd and 4th order vibration modes, the influence of weak interlayer on the slope deformation is enhanced; (4) based on the Fourier spectrum ratio analysis of accelerations, the frequencies where the response is amplified are close to the first five natural frequencies. The strong acceleration and displacement responses occur around the interlayer and above, which is consistent with the first five vibration modes of the slope. The consistence indicates the resonance response of the slope. It should be pointed out that the conclusion drawn in this paper cannot be used to accurately explain the dynamic response characteristics of the slope in the stage of large deformation and failure, but it can provide ideas for the in-depth study of the dynamic characteristics and resonance response of the slope.

参考文献/References:

[1] Khazai B, Sitar N. Evaluation of factors controlling earthquake-induced landslides caused by Chi-Chi earthquake and comparison with the Northridge and Loma Prieta events[J]. Engineering Geology, 2004, 71(1):79-95.
[2] Gorum T, Fan X, Westen C J V, et al. Distribution pattern of earthquake-induced landslides triggered by the 12 May 2008 Wenchuan earthquake[J]. Geomorphology, 2011, 133(3):152-167.
[3] 吴志坚, 王兰民, 陈拓,等. 汶川地震远场黄土场地地震动场地放大效应机制研究[J]. 岩土力学, 2012, 33(12):003736-3740. WU Zhijian, WANG Lanmin Chen Tuo,et al.Study of mechanism of site amplification effects on ground motion in far field loess during Wenchuan Ms8.0 earthquake[J].Rock and Soil Mechanics,2012, 33(12):003736-3740(in Chinese)
[4] 黄润秋, 裴向军, 李天斌. 汶川地震触发大光包巨型滑坡基本特征及形成机理分析[J]. 工程地质学报, 2008, 16(6):730-741. HUANG Runqiu,PEI Xiangjun,LI Tianbin. Basic characteristics and formation mechanism of the largest scale l and slide at dagungbao occurred during the wenchuan earthquake[J]. Journal of Engineering Geology, 2008, 16(6):730-741.(in Chinese)
[5] Yuan R M, Tang C L, Hu J C, et al. Ejection mechanism of the Donghekou landslide triggered by the 2008 Wenchuan Earthquake revealed by discrete element modeling[J]. Natural Hazards & Earth System Sciences, 2014, 14(5):3895.
[6] 刘汉香, 许强, 范宣梅,等. 地震动强度对斜坡加速度动力响应规律的影响[J]. 岩土力学, 2012, 33(5):41-47. LIU Hanxiang, XU Qiang, FAN Xuanmei,et al. Influence of ground motion intensity on dynamic response laws of slope accelerations[J]. Rock and Soil Mechanics, 2012, 33(5):41-47.(in Chinese)
[7] 杨国香, 伍法权, 董金玉,等. 地震作用下岩质边坡动力响应特性及变形破坏机制研究[J]. 岩石力学与工程学报, 2012, 31(4):696-702. YANG Guoxiang, WU Faquan, DONG Jinyu,et al. Study of dynamic response characters and failure mechanism of rock slope under earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(4):696-702.(in Chinese)
[8] 周飞, 许强, 刘汉香, 等. 地震作用下含水平软弱夹层斜坡动力响应特性研究[J]. 岩土力学, 2016(1):133-139. ZHOU Fei, XU Qiang, LIU Hanxiang,et al.An experimental study of dynamic response characteristics of slope with horizontal weak interlayer under earthquake[J]. Rock and Soil Mechanics, 2016(1):133-139.(in Chinese)
[9] 言志信, 张学东, 张森,等. 地震作用下边坡的共振响应研究[J]. 工程抗震与加固改造, 2011, 33(1):6-11. YAN Zhixin, ZHANG Xuedong, ZHANG Sen, et al. Study on seismic resonance effect of slope[J]. Earthquake Resistant Engineering and Retrofitting, 2011, 33(1):6-11.(in Chinese)
[10] 门妮, 孙有为, 薄景山,等. 地震作用下边坡动力响应及影响因素研究[J]. 世界地震工程, 2017, 33(3):112-120. MEN Ni, Sun Youwei, BO Jingshan,et al. Study on dynamic response and influence factors of slope under earthquake[J]. World Earthquake Engineering, 2017, 33(3):112-120.(in Chinese)
[11] 张学东, 言志信, 张森. ANSYS在岩质边坡动力响应分析中的应用[J]. 地震工程学报, 2010, 32(2):117-121. ZHANG Xuedong, YAN Zhixin, ZHANG Sen. Numerical analysis on dynamic response of rock slope using ANSYS software[J]. China Earthquake Engineering Journal, 2010, 32(2):117-121.(in Chinese)
[12] 范刚, 张建经, 付晓, 等. 传递函数在场地振动台模型试验中的应用研究[J]. 岩土力学, 2016, 37(10):2869-2876. FAN Gang, ZHANG Jianjing, FU Xiao,et al. Application of transfer function to on-site shaking table test[J]. Rock and Soil Mechanics,2016, 37(10):2869-2876.(in Chinese)
[13] Del Gaudio V, Wasowski J. Can landslide-prone slope response to strong shaking be inferred from weak motion data? First answer from 2009 L’Aquila earthquake[C]//Egu General Assembly Conference. 2010.
[14] Gaudio V D, Wasowski J. Directivity of slope dynamic response to seismic shaking[J]. Geophysical Research Letters, 2007, 34(12):107-124.
[15] 刘汉香. 基于振动台试验的岩质斜坡地震动力响应规律研究[D]. 成都:成都理工大学, 2014. LIU Hanxiang. Seismic responses of rock slopes in a shaking table test[D]. Chengdu:Chengdu University of Technology,2014.(in Chinese)
[16] Stolte A C, Cox B R, Lee R C. An Experimental topographic amplification study at Los Alamos National Laboratory using ambient vibrations[J]. Bulletin of the Seismological Society of America, 2017, 107(3):1386-1401.
[17] Zezhong Z, Jean-Alain F, Pellet F L. A case study of topographic site effects on seismic ground motions at Xishan Park ridge in Zigong, Sichuan, China[J]. Engineering Geology, 2018, 243:308-319.

相似文献/References:

[1]刘海波,齐宏伟,林大超,等.两种强度折减法确定边坡稳定系数适用性探讨[J].地震工程与工程振动,2010,30(05):163.
 LIU Haibo,QI Hongwei,LIN Dachao,et al.Discussion on applicability of two kinds of strength reduction methods for determining the slope stability factor[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2010,30(01):163.
[2]林玮,李巨文.预应力锚杆(索)框架梁加固边坡的仿真试验分析[J].地震工程与工程振动,2009,29(04):109.
 LIN Wei,LI Juwen.Numerical simulation tests on lattice beam with prestressed cable[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2009,29(01):109.
[3]原飞,刘红帅,郑桐,等.锚索抗滑桩的离心振动台模型试验设计[J].地震工程与工程振动,2014,34(02):240.[doi:10.13197/j.eeev.2014.02.240.yuanf.032]
 YUAN Fei,LIU Hongshuai,ZHENG Tong,et al.Centrifugal shaking table test design of anti-slide piles with prestressed cable[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2014,34(01):240.[doi:10.13197/j.eeev.2014.02.240.yuanf.032]

备注/Memo

备注/Memo:
收稿日期:2019-04-20;改回日期:2019-07-15。
基金项目:国家自然科学基金项目(41702316,41877254);地质灾害防治与地质环境保护国家重点实验室自主研究课(SKLGP2018Z015);四川省科技计划项目(2018SZ0339)
作者简介:周逸飞(1992-),男,硕士研究生,主要从事岩石力学与工程方面及地质灾害预警监测的研究.E-mail:goright@foxmail.com
更新日期/Last Update: 1900-01-01