[1]丁海平,李昕.参数和非参数方法计算相干函数的比较[J].地震工程与工程振动,2020,40(03):011-19.[doi:10.13197/j.eeev.2020.03.11.dinghp.002]
 DING Haiping,LI Xin.Comparison of parametric and non-parametric methods for calculating coherence function[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2020,40(03):011-19.[doi:10.13197/j.eeev.2020.03.11.dinghp.002]
点击复制

参数和非参数方法计算相干函数的比较
分享到:

《地震工程与工程振动》[ISSN:/CN:]

卷:
40
期数:
2020年03
页码:
011-19
栏目:
论文
出版日期:
2020-06-30

文章信息/Info

Title:
Comparison of parametric and non-parametric methods for calculating coherence function
作者:
丁海平12 李昕1
1. 江苏省结构工程重点实验室(苏州科技大学), 江苏 苏州 215011;
2. 中国地震局 工程力学研究所, 黑龙江 哈尔滨 150080
Author(s):
DING Haiping12 LI Xin1
1. Key Laboratory of Structural Engineering of Jiangsu Province(Suzhou University of Science and Technology), Suzhou 215011, China;
2. Institute of Engineering Mechanics, China Earthquake Administration, Harbin 150080, China
关键词:
SMART-1台阵空间相关性相干函数AR自回归模型参数拟合
Keywords:
SMART-1 arrayspace coherencecoherency functionAuto-Regressive Modelfitting parameters
分类号:
P315.9
DOI:
10.13197/j.eeev.2020.03.11.dinghp.002
摘要:
地震动空间相干函数计算主要两类方法,一是采用谱窗方法对功率谱和互功率谱进行平滑的非参数方法,另一类是采用K-T(Kainai-Tajimi)谱拟合功率谱和互功率谱的参数方法。本文选取了SMART-1台阵第5次和第45次地震的水平分量加速度记录,采用AR(Auto-Regressive)自回归模型的参数方法,计算了不同台站间距的相干系数,并选用Loh相干函数模型,对两种方法的相干系数进行拟合,分别得到了拟合参数和标准差。结果表明:(1)基于AR自回归模型方法得到的拟合标准差小于非参数法;(2)非参数法和参数法的相干系数有明显差别;(3)随着间距的增大,基于非参数法的相干系数随着频率增大而变小的程度放缓,而基于参数法的相干系数明显反映出相干系数符合随着频率增大而变小,同时也随距离的增大而减小的共识。
Abstract:
There are two main methods for calculating the spatial coherence function of ground motion. One is the non-parametric method when smoothing the power spectrum and the cross power spectrum by using the spectral window method, and the other is the parameter method using the K-T (Kainai-Tajimi) spectrum to fit the power spectrum and cross power spectrum. In this paper, the horizontal component acceleration records of the No.5 and No.45 earthquakes of SMART-1 array are selected, based on the parameter method of the AR (Auto-Regressive) model, the coherence coefficients of different station spacings are calculated, and Loh coherency function model is selected to fit the coherence coefficients of the two methods, and the fitting parameters and standard deviation are obtained respectively. The results show that: (1) The fitting Root Mean Squared Error based on the auto-regressive model method is smaller than the non-parametric method; (2) There is a significant difference in the coherence coefficient between the non-parametric method and the parametric method; (3) As the distance increases, the coherence coefficient based on the non-parametric method decreases slowly with increasing frequency, and the coherence coefficient based on the parametric method obviously reflects that the coherence coefficient decreases with frequency. At the same time, the consensus decreases as the distance increases.

参考文献/References:

[1] Somerville P G, Mclaren J P, Saikia C K. Site-specific estimation of spatial incoherence of strong ground motion, in Earthquake Engineering and Soil Dynamics Ⅱ, Recent advances in ground motion evaluation[J]. ASCE, 1988,20:189-202.
[2] Somerville P G, Mclaren J P, Sen M K, et al. The influence of site condition on the spatial incoherence of ground motions[J]. Structure Safety, 1991,10(1-3):1-14.
[3] Kiureghian A D. A coherency model for spatially varying ground motions[J]. Earthquake Engineering and Structural Dynamics, 1996, 25(1):99-111.
[4] Abrahamson N A, Schneider J F, Stepp J C. Empirical spatial coherency functions for application to soil-structure interaction[J]. Earthquake Spectra,1991, 7(1):1-27.
[5] Loh C H. Analysis of the spatial variation of seismic waves and ground movements from smart-1 array data[J]. Earthquake engineering & structural dynamics, 1985, 13(5) 561-581.
[6] Oliveira C S, Hao H, Penzien J. Ground motion modeling for multiple-input structural analysis[J] Structural Safety, 1991, 10(1/2/3):79-93.
[7] 丁海平, 袁莉莉, 刘成浩. 窗函数和带宽对地震动相干函数的影响[J]. 自然灾害学报, 2018, 27(3):1-11. DING Haiping, YUAN Lili, LIU Chenghao. Effection of window fuction and bandwidth on the ground motion’s cherency function[J]. Journal of Natural Disasters, 2018, 27(3):3-13.(in Chinese)
[8] Kanai K. Semi-empirical formula for the seismic characteristics of the ground[R]. Bulletin of the Earthquake Research Institute, University of Tokyo, Japan 1957, 35(2):309-325.
[9] Tajimi H. A statistical method of determining the maximum response of a building structure during an earthquake[J]. Proceedings of the 2nd World Conference on Earthquake Engineering, 1960, 11(2):1-16.
[10] Clough R W,Penzien J. Dynamics of structures[J]. Journal of Applied Mechanics, 1977, 44(2):366.
[11] Harichandran R S, Vanmarcke E H. Stochastic variation of earthquake ground motion in space and time[J]. Journal of the Engineering Mechanics Division (ASCE), 1986, 112(2):154-174.
[12] HAO H. Effects of spatial variation of ground motions on large multiply-supported structures[J]. Report, University of California, Berkeley, 1989.
[13] Rupakhety R, Sigbj?nsson R. Spatial variability of strong ground motion novel system-based technique applying parametric time series modelling[J]. Bulletin of Earthquake Engineering, 2012, 10(4):1193-1204.
[14] 丁海平, 罗翼, 等. 截止频率的取值对地震动空间相干函数统计结果的影响[J]. 地震学报, 2018, 40(5):664-672. DING Haiping, LUO Yi, et al. The influence of cut-off frequency on the statistical results of spatial coherency function of seismic ground motion[J]. Acta Seismologica Sinica, 2018, 40(5):664-672.(in Chinese)
[15] Abrahamson N A,Bolt B A,Darragh R B,et al.The SMART I accelerograph array (1980-1987):a review[J]. Earthquake Spectra,1987,3(2):263-287.
[16] Akaike H. Power spectrum estimation through autoregressive model fitting[J]. Annals of the institute of Statistical Mathematics, 1969, 21(1) 407-419.
[17] 杨叔子,吴雅. 时间序列分析的工程应用[M]. 下册.武汉:华中科技大学, 2007. YANG Shuzi, WU Ya. Time series analysis in engineering application[M]. (Second Edition)Wuhan:Huazhong University of Science and Technology Press, 2007. (in Chinese)
[18] 丁海平, 朱越, 李昕. 基于AR模型的相干函数有效频段范围的确定[J]. 地震工程与工程振动, 2020, 40(1):30-38. DING Haiping, ZHU Yue, LI Xin. Selection of effective firequency range for coherency function based on autoregressive model[J]. Earthquake Engineering and Engineering Dynamics, 2020, 40(1):30-38.(in Chinese)
[19] Zerva A, Beck J L. Identifification of parametric ground motion random fields from spatially recorded data[J]. Earthquake Engineering and Structural Dynamics, 2003, 32(5):771-791.

相似文献/References:

[1]丁海平,朱越,于彦彦.基于能量的相干函数有效频段范围的选取[J].地震工程与工程振动,2019,39(02):035.[doi:10.13197/j.eeev.2019.02.35.dinghp.005]
 DING Haiping,ZHU Yue,YU Yanyan.Selection of effective frequency range for coherencey function based on energy method[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2019,39(03):035.[doi:10.13197/j.eeev.2019.02.35.dinghp.005]
[2]丁海平,朱越,李昕.基于AR模型的相干函数有效频段范围的确定[J].地震工程与工程振动,2020,40(01):030.[doi:10.13197/j.eeev.2020.01.30.dinghp.004]
 DING Haiping,ZHU Yue,LI Xin.Determination of effective frequency range for coherency function based on autoregressive model[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2020,40(03):030.[doi:10.13197/j.eeev.2020.01.30.dinghp.004]
[3]饶威波,丁海平,罗翼.台站间距d的分布对地震动空间相干函数的影响[J].地震工程与工程振动,2018,38(03):103.[doi:10.13197/j.eeev.2018.03.103.raowb.012]
 RAO Weibo,DING Haiping,LUO Yi.The influence of the distribution of station distance d on the ground motion’s coherence function[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2018,38(03):103.[doi:10.13197/j.eeev.2018.03.103.raowb.012]

备注/Memo

备注/Memo:
收稿日期:2019-12-15;改回日期:2020-02-10。
基金项目:国家自然科学基金项目(51678383)
作者简介:丁海平(1966-),男,教授,博士,主要从事地震工程和防灾减灾工程研究.E-mail:hpding@126.com
更新日期/Last Update: 1900-01-01