[1]周云,周赛,裴熠麟,等.基于大数据与区间仿射算法的非接触式桥梁结构影响线识别[J].地震工程与工程振动,2020,40(03):020-31.[doi:10.13197/j.eeev.2020.03.20.zhouy.003]
 ZHOU Yun,ZHOU Sai,PEI Yilin,et al.A non-contact identification of bridge influence line based on big data using interval analysis and affine algorithm[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2020,40(03):020-31.[doi:10.13197/j.eeev.2020.03.20.zhouy.003]
点击复制

基于大数据与区间仿射算法的非接触式桥梁结构影响线识别
分享到:

《地震工程与工程振动》[ISSN:/CN:]

卷:
40
期数:
2020年03
页码:
020-31
栏目:
论文
出版日期:
2020-06-30

文章信息/Info

Title:
A non-contact identification of bridge influence line based on big data using interval analysis and affine algorithm
作者:
周云123 周赛23 裴熠麟23 程依婷23 李紫玮23
1. 工程结构损伤诊断湖南省重点实验室, 湖南 长沙 410082;
2. 湖南大学 土木工程学院, 湖南 长沙 410082;
3. 周绪红院士湖南大学新型体系研究中心, 湖南 长沙 410082
Author(s):
ZHOU Yun123 ZHOU Sai23 PEI Yilin23 CHENG Yiting23 LI Ziwei23
1. Hunan Provincial Key Laboratory of Damage Detection, Hunan University, Changsha 410082, China;
2. College of Civil Engineering, Hunan University, Changsha 410082, China;
3. New System Research Center, Academician Zhou Xuhong, Hunan University, Changsha 410082, China
关键词:
结构健康监测桥梁影响线区间分析仿射算法大数据支持向量机车桥耦合
Keywords:
structural health monitoring (SHM)bridge influence lineinterval analysisaffine algorithmbig datasupport vector machine (SVM)coupled vehicle-bridge system
分类号:
P315.9
DOI:
10.13197/j.eeev.2020.03.20.zhouy.003
摘要:
影响线在桥梁结构状态评估方面具有重要意义,针对现有影响线测量方法在实桥测试上的局限与不足,提出了一种基于大数据与区间仿射算法的中小型桥梁结构影响线非接触识别方法。首先,基于车辆参数统计结果,建立了车辆类型与轴重区间的映射关系;然后,结合车辆参数的区间不确定性,运用仿射算法计算反演多工况影响线区间;最后,基于大数据挖掘分析,采用支持向量机二分类算法从多工况的影响线区间中提取真实影响线。通过开展车桥耦合数值模拟分析及实验室缩尺模型试验,分别对所提方法的稳定性与有效性进行测试,初步验证了本文的非接触影响线识别方法较传统方法具有更好的发展前景。
Abstract:
The influence line (IL) plays an significant role in fields of bridge condition evaluation. In view of the limitations and shortcomings of existing IL measurement methods in real bridge testing, a non-contact method for IL identification for small and medium bridges based on big data and affine algorithm is proposed. First, the mapping relations between vehicle types and axle-weight intervals are established on the basis of statistic data. Subsequently, combined with the axle-weight intervals of the traveling vehicles, the IL intervals of the bridge under multiple cases can be successfully back-calculated by utilizing interval analysis and affine algorithm. Finally, based on the big data mining and analysis, the two-classification algorithm of support vector machine (SVM) is employed to extract the real IL from the IL intervals of multiple testing cases. By carrying out the numerical simulation analysis and laboratory scale model test, the stability and effectiveness of the proposed method are tested, which preliminarily verifies that the non-contact IL identification method in this paper has a better development prospect than the traditional methods.

参考文献/References:

[1] Zolghadri N, Halling M W, Johnson N, et al. Field verification of simplified bridge weigh-in-motion techniques[J]. Journal of Bridge Engineering, 2016, 21(10):04016063-1-16.
[2] Catbas F N, Zaurin R, Gul M, et al. Sensor networks, computer imaging, and unit influence lines for structural health monitoring:Case study for bridge load rating[J]. Journal of Bridge Engineering, 2011, 17(4):662-670.
[3] Chen, ZhiWei, et al. Damage detection in long suspension bridges using stress influence lines[J]. Journal of Bridge Engineering, 2014, (20)3:05014013-1-11.
[4] Moses F. Weigh-in-motion system using instrumented bridges[J]. Transportation Engineering Journal, 1979, 105(3):233-249.
[5] Znidaric A, Baumgartner W. Bridge weigh-in-motion systems-An overview[C]//Second European Conference on Weigh-In-Motion of Road Vehicles. Held Lisbon, Portugal:Office for Official Publications of the European Communities, 1998:14-16.
[6] Eiki Yamaguchi, Shin-ichi Kawamura, Kazushi Matuso1, et al. Bridge-Weigh-In-Motion by Two-Span Continuous Bridge with Skew and Heavy-Truck Flow in Fukuoka Area, Japan[J]. Advances in Structural Engineering, 2009, 12(1):115-125.
[7] Znidaric A, Lavric I, Kalin J. Extension of bridge WIM systems to slab bridges[C]//Second European Conference on Weigh-In-Motion of Road Vehicles. Held Lisbon, Portugal:Office for Official Publications of the European Communities, 1998:263-71.
[8] MCNULTY P, OBRIEN E. J. Testing of bridge weigh-in-motion system in sub-arctic climate[J]. Journal of Testing and Evaluation, 2003, 31(6):1-10.
[9] O’Brien E J, Quilligan M J, Karoumi R. Calculating an influence line from direct measurements[J]. Proceedings of the ICE-Bridge Engineering, 2006, 159(1):31-34.
[10] Hirachan J, Chajes M. Experimental influence lines for bridge evaluation[J]. Bridge Structures, 2005, 1(4):405-412.
[11] Zaurin Ricardo, F Necati Catbas. Structural health monitoring using video stream, influence lines, and statistical analysis[J]. Structural Health Monitoring, 2011, 10(3):309-332.
[12] Zhao H, Uddin N, O’Brien E J, et al. Identification of vehicular axle weights with a bridge weigh-in-motion system considering transverse distribution of wheel loads[J]. Journal of Bridge Engineering, 2013, 19(3):04013008-1-16.
[13] Ieng S S. Bridge influence line estimation for bridge weigh-in-motion system[J]. Journal of Computing in Civil Engineering, 2014, 29(1):06014006-1-4.
[14] Wahbeh A M, Caffrey J P, Masri S F. A vision-based approach for the direct measurement of displacements in vibrating systems[J]. Smart Materials and Structures, 2003, 12(5):785-794.
[15] Zaurin R, Catbas F N. Integration of computer imaging and sensor data for structural health monitoring of bridges[J]. Smart Materials and Structures, 2009, 19(1):015019-1-15.
[16] Lydon D, Lydon M, del Rincón J M, et al. Development and field testing of a time-synchronized system for multi-point displacement calculation using low-cost wireless vision-based sensors[J]. IEEE Sensors Journal, 2018, 18(23):9744-9754.
[17] Zaurin R, Khuc T, Catbas F N. Hybrid sensor-camera monitoring for damage detection:case study of a real bridge[J]. Journal of Bridge Engineering, 2016, 21(6):05016002-1-13.
[18] Ojio T, Carey C H, OBrien E J, et al. Contactless bridge weigh-in-motion[J]. Journal of Bridge Engineering, 2016, 21(7):04016032-1-11.
[19] Yu Yang, C S Cai, Lu Deng. State-of-the-art review on bridge weigh-in-motion technology[J]. Advances in Structural Engineering, 2016, 19(9):1514-1530.
[20] Yu Ling, Tommy H T Chan. Moving force identification based on the frequency-time domain method[J]. Journal of Sound and Vibration, 2003, 261(2):329-349.
[21] Rowley C W, Obrien E J, Gonzalez A, et al. Experimental testing of a moving force identification bridge weigh-in-motion algorithm[J]. Experimental Mechanics, 2009, 49(5):743-746.
[22] Moore R E. Interval analysis[J]. Prentice-Hall, Inc. Englewood Cliffs, N.J. 1966.
[23] Qiu Z, Ma Y, Wang X. Comparison between non-probabilistic interval analysis method and probabilistic approach in static response problem of structures with uncertain-but-bounded parameters[J]. Communications in Numerical Methods in Engineering, 2010, 20(4):279-290.
[24] Liu J, Han X, Jiang C, et al. Dynamic load identification for uncertain structures based on interval analysis and regularization method[J]. International Journal of Computational Methods, 2011, 8(4):667-683.
[25] Jiang C, Han X, Liu G R. Optimization of structures with uncertain constraints based on convex model and satisfaction degree of interval[J]. Computer Methods in Applied Mechanics and Engineering, 2007, 196(49-52):4791-4800.
[26] 李炜明, 朱宏平, 夏勇. 基于车辆响应的桥梁结构参数的统计区间估计[J]. 工程力学, 2008, 25(S2):254-258. LI Weiming, ZHU Hongping, XIA Yong. Statistic interval estimation on bridge parameters based on noised vehicle response[J]. Engineering Mechanics, 2008, 25(S2):254-258. (in Chinese)
[27] Liu N, Gao W, Song C, et al. Interval dynamic response analysis of vehicle-bridge interaction system with uncertainty[J]. Journal of Sound and Vibration, 2013, 332(13):3218-3231.
[28] 苏静波, 邵国建. 基于区间分析的工程结构不确定性研究现状与展望[J]. 力学进展, 2005, 35(3):338-344. SU Jingbo, SHAO Guojian. Current research and prospects on interval analysis in engineering structures uncertainty analysis[J]. Advances in Mechanics,2005, 35(3):338-344. (in Chinese)
[29] Stolfi J, De Figueiredo L H. An introduction to affine arithmetic[J]. Tema Tend.mat.apl.comput, 2003, 4(3):297-312.
[30] Degrauwe D, Lombaert G, Roeck G D. Improving interval analysis in finite element calculations by means of affine arithmetic[J]. Computers & Structures, 2010, 88(3-4):247-254.
[31] Amari S, Wu S. Improving support vector machine classifiers by modifying kernel functions[J]. Neural Networks, 1999, 12(6):783-789.
[32] 萧嵘, 王继成, 张福炎. 支持向量机理论综述[J]. 计算机科学, 2000, 27(3):1-3. XIAO Rong, WANG Jicheng, ZHANG Fuyan. Survey of support vector machine theory[J]. Computer Engineering and Application, 2000, 27(3):1-3. (in Chinese)
[33] 赵学风, 段晨东, 刘义艳, 等. 基于小波包变换的支持向量机损伤诊断方法[J]. 振动、测试与诊断, 2008, 28(2):104-107. ZHAO Xuefeng, DUAN Chendong, LIU Yiyan, et al. Diagnosis of structure damage by support vector machine based on wavelet packet transform[J]. Journal of Vibration, Measurement &Diagnosis, 2008, 28(2):104-107. (in Chinese)
[34] GB7031-2005振动输入路面平度表示方法[S]. GB7031-2005 Vehicle Vibration Describing Method for Road Surface Irregularity[S]. (in Chinese)
[35] 郭正康. 汽车整车转动惯量的计算与选取[J]. 汽车研究与开发, 1993, 8(6):42-44. GUO Zhengkang. Calculation and selection of vehicles moment of inertia[J]. Research and development of car, 1993, 8(6):42-44. (in Chinese)
[36] 邓露, 段林利, 何维. 中国公路车-桥耦合振动车辆模型研究[J]. 中国公路学报, 2018, 31(7):92-100. DENG Lu, DUAN Linli, HE Wei. Study on vehicle model for vehicle-bridge coupling vibration of highway bridge in China[J]. China Journal of Highway and Transport, 2018, 31(7):92-100. (in Chinese)
[37] Obrien E J, Cantero D, Enright B, et al. Characteristic Dynamic Increment for extreme traffic loading events on short and medium span highway bridges[J]. Engineering Structures, 2010, 32(12):3827-3835.
[38] He W, Deng L, Shi H, et al. Novel virtual simply supported beam method for detecting the speed and axles of moving vehicles on bridges[J]. Journal of Bridge Engineering, 2016, 22(4):04016141-1-16.

相似文献/References:

[1]刘涛,李爱群,丁幼亮.小波分析在结构损伤识别中的应用[J].地震工程与工程振动,2008,28(02):029.
 LIU Tao,LI Aiqun,DING Youliang.Application of wavelet analysis to structural damage identification[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2008,28(03):029.
[2]何浩祥,闫维明,马华,等.结构健康监测系统设计标准化评述与展望[J].地震工程与工程振动,2008,28(04):154.
 HE Haoxiang,YAN Weiming,MA Hua,et al.Review and prospect of standardization of structural health monitoring system design[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2008,28(03):154.
[3]代志勇,王延伟.基于NEESit的结构健康监测系统软件框架研究[J].地震工程与工程振动,2009,29(05):133.
 DAI Zhiyong,WANG Yanwei.A study on software framework of structural health monitoring system based on NEESit[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2009,29(03):133.

备注/Memo

备注/Memo:
收稿日期:2019-10-02;改回日期:2020-12-11。
基金项目:国家自然科学基金项目(51878264);湖南省重点研发计划项目(2017SK2220)
作者简介:周云(1979-),男,教授,博士,主要从事结构健康监测及非接触桥梁无损检测方面研究.E-mail:zhouyun05@hnu.edu.cn
通讯作者:周赛(1995-),女,硕士研究生,主要从事桥梁结构健康监测方面研究.E-mail:zhousai2017@163.com)
更新日期/Last Update: 1900-01-01