[1]何浩祥,胡一凡,程时涛.面向可恢复能力和性价比的结构减震阻尼器类型择优[J].地震工程与工程振动,2020,40(03):032-42.[doi:10.13197/j.eeev.2020.03.32.hehx.004]
 HE Haoxiang,HU Yifan,CHENG Shitao.Type optimal selection of structural dampers oriented to seismic resilience and cost performance[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2020,40(03):032-42.[doi:10.13197/j.eeev.2020.03.32.hehx.004]
点击复制

面向可恢复能力和性价比的结构减震阻尼器类型择优
分享到:

《地震工程与工程振动》[ISSN:/CN:]

卷:
40
期数:
2020年03
页码:
032-42
栏目:
论文
出版日期:
2020-06-30

文章信息/Info

Title:
Type optimal selection of structural dampers oriented to seismic resilience and cost performance
作者:
何浩祥 胡一凡 程时涛
北京工业大学 工程抗震与结构诊治北京市重点实验室, 北京 100124
Author(s):
HE Haoxiang HU Yifan CHENG Shitao
Beijing Key Lab of Earthquake Engineering and Structural Retrofit, Beijing University of Technology, Beijing 100124, China
关键词:
结构控制损伤评价性价比阻尼器可恢复能力
Keywords:
structural controldamage evolutioncost performancedamperresilience capacity
分类号:
TU352.12
DOI:
10.13197/j.eeev.2020.03.32.hehx.004
摘要:
现有的减震结构减震率和阻尼器性能评价方法限于评价指标不够丰富且未考虑主余震及结构可恢复能力等因素具有较大的局限性。通过构建“主震-余震-余震”的时程序列反映主余震效应,使用结构能量损伤指数和多种减震率评价指标量化阻尼器性能,基于考虑主余震效应、时间成本和经济投入的修复定额提出可恢复能力计算方法。在此基础上提出减震结构阻尼器性价比评价方法,并实现黏滞阻尼器、防屈曲支撑和金属阻尼器等不同阻尼器类型的对比和择优。通过算例对以上指标和方法进行验证,结果表明:考虑结构可恢复性并对减震结构损伤构件进行修复的工况能够充分发挥阻尼器性能,性价比远高于仅考虑主震的结构;在给定目标减震率下,虽然黏滞阻尼器的减振率优于防屈曲支撑和金属阻尼器,但3种阻尼器综合性价比排序为:金属阻尼器、防屈曲支撑和黏滞阻尼器,按性价比选择阻尼器更全面客观。
Abstract:
The current methods for evaluating the damping rate and the performance of dampers are limited to the factors such as insufficient evaluation indexes, not considering the main aftershocks and the structural resilience. The time sequence of "main shock-aftershock-aftershock" is constructed to represent the main aftershock effect. The energy damage index and various damping rate evaluation indexes are used to quantify the performances of different dampers. Based on the repair quota considering the main aftershock effect, time cost and economic input, a resilience capacity calculation method is proposed. On this basis, a cost performance evaluation method of seismic dampers is proposed, and the comparison and optimization of different types of dampers, such as viscous dampers, buckling braces and metal dampers, are realized. The above index and methods are verified by an example. The results show that the performance of dampers can be fully utilized when considering the structural resilience capacity and repairing the damaged components, and the cost performance ratio is much higher than that of structures only considering the main shock. For the given target damping rate, although the damping rate of viscous dampers is better than that of buckling braces and metal dampers, the comprehensive cost performance ratio of the three dampers is arranged as follows: metal dampers, buckling braces and viscous dampers, and the selection of dampers according to the cost-performance ratio is more comprehensive and objective.

参考文献/References:

[1] LAURA M, ALICE A, Simon Laflammea, et al. Performance-based design with life-cycle cost assessment for damping systems integrated in wind excited tall buildings[J]. Engineering Structures, 2019, 195(5):438-451.
[2] IOSNNIS G, ALEXANDROS A Taflanidis. Performance Assessment and Optimization of Fluid Viscous Dampers Through Life-Cycle Cost Criteria and Comparison to Alternative Design Approaches[J]. Bulletin of Earthquake Engineering, 2015, 13(4):1003-1028.
[3] JUNAEDI U. Improving resilience of moment frames using steel pipe dampers[C]//4th International Conference on Rehabilitation and Maintenance in Civil Engineering, 2018, 195(4), 02014.
[4] RITA G, GIUSEPPE C M, ALESSANDRA F. Performance-cost optimization of tuned mass damper under low-moderate seismic actions[J]. Structural Design of Tall and Special Buildings, 2016, 25(6):1103-1122.
[5] 鲁风勇, 袁旭东. 黏滞阻尼减震系统的性价比[J]. 江苏建筑, 2018,17(5):61-64. LU Fengyong, YUAN Xudong. The performance price ratio of viscous damping technology[J]. Jiangsu Construction, 2018(5):61-64. (in Chinese)
[6] 朱立华, 李钢, 李宏男. 考虑结构损伤的消能减震结构能量设计方法[J]. 工程力学, 2018, 35(5):75-85. ZHU Lihua, LI Gang, LI Hongnan. Energy-based aseismic design for building with passive energy dissipation systems considering damage[J]. Engineering Mechanics, 2018, 35(5):75-85. (in Chinese)
[7] 曲激婷, 李宏男, 李钢. 位移型消能器在结构减震控制中的位置优化研究[J]. 工程力学, 2009, 26(1):43-48. QU Jiting, LI Hongnan, LI Gang. Optimal placement of displacement-based energy dissipative devices for passive response control[J]. Engineering Mechanics, 2009, 26(1):43-48. (in Chinese)
[8] 上官之政. 基于不同类型阻尼器的某超高层结构的减震效果对比与布置优化[D]. 南昌:南昌工程学院, 2018. SHANGGUAN Zhizheng. Comparison and layout optimization of a super high-rise structure based on different types of dampers[D]. Nanchang:Nanchang Institute of Technology, 2018. (in Chinese)
[9] 曲径. 高层建筑结构耗能减震技术经济性综合评价研究[D]. 哈尔滨:东北林业大学, 2015. QU Jing. Economy of High-Rise Building Structure Energy Shock Technology Absorption[D]. Harbin:Northeast Forestry University, 2015(in Chinese)
[10] 于晓辉, 乔雨蒙, 代旷宇,等. 主余震序列作用下非线性单自由度体系的增量损伤分析[J]. 工程力学, 2019, 36(3):121-130. YU Xiaohui, QIAO Yumeng, DAI Kuangyu, et al. Incremental damage analysis of nonlinear single-degree-freedom system subjected to manshock-aftershock earthquake sequences[J]. Engineering Mechanics, 2019, 36(3):121-130. (in Chinese)
[11] 何浩祥, 陈奎, 范少勇. 基于弹塑性耗能差率的地震损伤评估模型及分析方法[J]. 振动工程学报, 2018, 31(3):382-390. HE Haoxiang, CHEN Kui, FAN Shaoyong. Seismic damage model based on differential ratio of elastic plastic dissipated energy and application[J]. Journal of Vibration Engineering, 2018, 31(3):382-390. (in Chinese)
[12] LOPEZ G D. A simple method for the design of optimal damper configurations in MDOF structures[J]. Earthquake Spectra, 2001, 17(3):387-393.
[13] 巫振弘, 薛彦涛, 王翠坤. 粘滞阻尼器经济配置数量计算方法[J]. 建筑科学, 2013, 29(9):39-43. WU Zhenxian, XUE Hongtao, WANG Cuikun. Calculation method for economic magnitude of viscous damper[J]. Building Science, 2013, 29(9):39-43. (in Chinese)
[14] HUTT C M, ALMUFTI I, WILLFORD M, et al. Seismic loss and downtime assessment of existing tall steel-framed buildings and strategies for increased resilience[J]. Journal of Structural Engineering, 2016, 142(8):1-17.
[15] 李英民, 杨龙, 刘硕宇,等. 基于可恢复性能的结构损伤机制评价方法[J]. 浙江大学学报(工学版), 2017, 51(11):2197-2206. LI Yingmin, YANG long, LIU Shuoyu,et al. Method of failure mode evaluation of structure based on seismic resilience index[J]. Journal of Zhejiang University, 2017, 51(11):2197-2206. (in Chinese)
[16] 朱健, 谭平, 周福霖,等. 土木工程结构全寿命期地震损失成本进展研究[J]. 振动与冲击, 2015, 34(17):111-119. ZHU Jian, TAN Ping, ZHOU Fulin, et al. A review of study on lfe-cycle seismic loss estimation in civil engineering[J]. Journal of Vibration and Shock, 2015, 34(17):111-119. (in Chinese)
[17] 潘鹏, 叶列平, 钱稼茹,等. 建筑结构消能减震设计与案例[M]. 北京:清华大学出版社, 2014 PAN Peng, YE Lieping, QIAN Jiaru,et al. Seismic design of building structures equipped with energy dissipation devices[M]. Beijing:Tsinghua University Press, 2014. (in Chinese)

相似文献/References:

[1]宋刚,吴志刚,林家浩.考虑参数不确定性的结构抗震鲁棒H∞控制[J].地震工程与工程振动,2008,28(06):226.
 SONG Gang,WU Zhigang,LIN Jiahao.Robust H∞ control for earthquake-excited structures with parameter uncertainties[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2008,28(03):226.
[2]王全凤,刘良林,沈章春.HRB400级钢筋混凝土柱损伤的评价[J].地震工程与工程振动,2009,29(02):173.
 WANG Quanfeng,LIU Lianglin,SHEN Zhangchun.Evaluation of damage to HRB400 grade reinforced concrete columns[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2009,29(03):173.
[3]郑伟,阎石.基于遗传算法优化的高层建筑风振模糊控制[J].地震工程与工程振动,2009,29(04):178.
 ZHENG Wei,YAN Shi.Wind vibration control of high-rise buildings based on fuzzy controller optimized by genetic algorithm[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2009,29(03):178.
[4]楼群,施养杭.基于改进Skyhook算法的MRFDA系统抗震性能分析[J].地震工程与工程振动,2013,33(05):110.
 LOU Qun,SHI Yanghang.Modified Skyhook algorithm for MRFDA system: seismic analysis[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2013,33(03):110.
[5]李忠献,张媛,王泽明.土-结构动力相互作用对结构控制的影响[J].地震工程与工程振动,2005,25(03):138.
 Li Zhongxian,Zhang Yuan,Wang Zeming.Influence of soil-structure dynamic interaction on structural control[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2005,25(03):138.
[6]王刚,姚谦峰.静态输出反馈在被动控制设计中的应用[J].地震工程与工程振动,2005,25(03):158.
 Wang Gang,Yao Qianfeng.Application of static output feedback in passive control design[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2005,25(03):158.
[7]王玉梅.基于结构物理特性的不规则建筑抗震控制的传感器布置[J].地震工程与工程振动,2014,34(04):182.[doi:10.13197/j.eeev.2014.04.182.wangym.024]
 WANG Yumei.Sensor placement for the seismic control of the irregular building based on structural physical properties[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2014,34(03):182.[doi:10.13197/j.eeev.2014.04.182.wangym.024]
[8]王清,王建晖,马克茂,等.结构振动控制的非光滑控制算法及其应用[J].地震工程与工程振动,2016,36(05):207.[doi:10.13197/j.eeev.2016.05.207.wangq.025]
 WANG Qing,WANG Jianhui,MA Kemao,et al.Nonsmooth control algorithm for structural vibration control and its applications[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2016,36(03):207.[doi:10.13197/j.eeev.2016.05.207.wangq.025]
[9]马高,孙熠辉,李惠.单自由度体系残余位移分析及损伤评价[J].地震工程与工程振动,2017,37(05):109.[doi:10.13197/j.eeev.2017.05.109.mag.013]
 MA Gao,SUN Yihui,LI Hui.Residual displacement analysis and damage assessment of SDOF system[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2017,37(03):109.[doi:10.13197/j.eeev.2017.05.109.mag.013]

备注/Memo

备注/Memo:
收稿日期:2019-09-20;改回日期:2019-12-15。
基金项目:国家重点研发计划项目(2017YFC1500604);国家自然科学基金项目(51878017)
作者简介:何浩祥(1978-),男,教授,博士,主要从事结构抗震减震研究.E-mail:hhx7856@163.com
更新日期/Last Update: 1900-01-01