[1]张超,傅光辉,林志滔,等.主塔类型对斜拉桥横向地震响应的影响[J].地震工程与工程振动,2020,40(03):097-107.[doi:10.13197/j.eeev.2020.03.97.zhangc.010]
 ZHANG Chao,FU Guanghui,LIN Zhitao,et al.Influence of the tower shapes on lateral seismic response of cable-stayed bridge[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2020,40(03):097-107.[doi:10.13197/j.eeev.2020.03.97.zhangc.010]
点击复制

主塔类型对斜拉桥横向地震响应的影响
分享到:

《地震工程与工程振动》[ISSN:/CN:]

卷:
40
期数:
2020年03
页码:
097-107
栏目:
论文
出版日期:
2020-06-30

文章信息/Info

Title:
Influence of the tower shapes on lateral seismic response of cable-stayed bridge
作者:
张超12 傅光辉1 林志滔3 林成杰1
1. 福州大学 土木工程学院, 福建 福州 350108;
2. 北京工业大学 城市与工程安全减灾教育部重点实验室, 北京 100124;
3. 福州市规划勘测设计研究总院, 福建 福州 350108
Author(s):
ZHANG Chao12 FU Guanghui1 LIN Zhitao3 LIN Chengjie1
1. College of Civil Engineering, Fuzhou University, Fuzhou 350108, China;
2. Key Laboratory of Urban Security & Disaster Engineeringof the MOE, Beijing University of Technology, Beijing 100124, China;
3. Fuzhou Planning Design & Research Institute, Fuzhou 350108, China
关键词:
斜拉桥主塔类型钻石型主塔倾角近断层地震
Keywords:
cable-stayed bridgetower shapediamond shapeinclination angle of towernear-feild earthquake
分类号:
U448.27
DOI:
10.13197/j.eeev.2020.03.97.zhangc.010
摘要:
通常情况下斜拉桥的主梁与主塔横向自由度约束,因此,主塔横向地震响应通常为斜拉桥抗震设计中的控制工况。目前,对于斜拉桥主塔横向抗震性能的研究大多是针对某特定形状的主塔,不同塔型主塔抗震性能的区别还鲜有研究。本文基于某斜拉桥实际方案,建立不同塔型的斜拉桥仿真模型,对比分析了不同塔型斜拉桥的静力及动力特性,并探讨了不同类型地震动(远场FF、近场无脉冲NNF、近场有脉冲PNF)对于各种塔型斜拉桥地震响应的影响。分析表明:恒载下钻石型与花瓶型塔底的剪力与弯矩会显著大于其它塔型;横向地震作用下,各类型主塔的最大弯矩响应均出现在塔底,其中钻石型与花瓶型塔底的响应显著大于其他塔型。对于各种塔型,近场脉冲型地震动(PNF)均会导致(相较FF和NNF)更显著的主塔内力响应,且PNF导致的响应放大系数对于各种塔型均差不多(约为2倍)。塔身倾角的参数分析结果表明:随着上、下倾角逐渐减小(由95°减小至75°),地震下塔底弯矩均会逐渐增大约2倍。
Abstract:
Generally, the lateral degree of freedom between deck and tower of cable stayed bridge (CSB) is constrained. Therefore, the lateral seismic response of the tower is the controlling loading case in the seismic design of CSB. At present, previous studies on lateral seismic performance of CSB only for the tower with specific shape. Few studies have discussed the different seismic response due to different tower shapes. A cable-stayed bridge project is taken as research background, and the finite element models of CSB with different tower shapes were established. The static response and dynamic characteristics of CSB with different tower shapes were analyzed. Furthermore, the seismic responses of CSBs subjected to different ground motions, such as Far-Field (FF), No Pulse Near-Field (NNF), Pulse Near-Field (PNF) were compared. The analysis results show that: when the CSBs suffered from dead load, the shear forces and bending moments (BM) of Diamond shape (DS) tower and Vase shape (VS) tower are significantly larger than others shape towers. Under earthquake excitation, the BM responses of DS tower and VS tower also significant larger than others. For various tower types, near-field pulsed ground motion (PNF) will cause (compared to FF and NNF) a more significant internal force response of the main tower, and the response amplification factor caused by PNF is similar for various tower types (about 2 times). The parameter analysis results of the tower inclination angle show that as the upward and downward inclination angles gradually decrease (from 95° to 75°), the bending moment at the bottom of the tower will gradually increase by about 2 times.

参考文献/References:

[1] 袁万城, 闫冬. 斜拉桥纵飘频率简化计算方法[J]. 同济大学学报:自然科学版,2005,33(11):1423-1427. YUAN Wancheng, YAN Dong. Simplified calculational method of floating frequency for cable-stayed bridges[J]. Journal of Tongji University (Natural Science), 2005,33(11):1423-1427. (in Chinese)
[2] A Camara, E Efthymiou. Deck-tower interaction in the transverse seismic response of cable-stayed bridges and optimum configurations[J]. Engineering Structures,2016, 124:494-506.
[3] SeplikaYadi, B. Suhendro and H. Priyosulistyo. et al. Shake table test of floating cable-stayed bridge under earthquake excitation during construction with balanced cantilever method[J]. International Journal of Civil Engineering and Technology, 2018,9(11):2063-2081.
[4] 徐艳, 段昕智, 李建中. 强震作用下斜拉桥纵桥向非线性地震反应分析[J]. 华南理工大学学报(自然科学版), 2012,40(6):132-138. XU Yan, DUAN Xinzhi, LI Jiangzhong. Analysis of nonlinear seismic response of cable-stayed bridge subjected to longitudinal strong ground motions[J]. Journal of South China University of Technology (Natural Science Edition), 2012,40(6):132-138. (in Chinese)
[5] 韩振峰,叶爱君. 千米级斜拉桥的纵向减震体系研究[J]. 地震工程与工程振动. 2015,35(6):64-70. HAN Zhenfeng, YE Aijun. Research on the longitudinal earthquake-reduction system of cable-stayed bridges over kilometers[J]. Earthquake Engineering and Engineering Dynamics, 2015,35(6):64-70. (in Chinese)
[6] 李立峰,刘本永,张晨熙,等. 中等跨径斜拉桥塔梁弹性约束装置的减震效应研究[J]. 地震工程与工程振动. 2012,33(1):146-152. LI Lifeng, LIU Benyong, ZHANG Chenxi, et al. Research on the seismic performance of mid-span cable-stayed bridges with elastic constraints between tower and beam[J]. Earthquake Engineering and Engineering Dynamics, 2012,33(1):146-152. (in Chinese)
[7] 沈星, 叶爱君. 大跨度斜拉桥倒y型混凝土主塔横向抗震性能分析[J]. 中国公路学报, 2015,28(11):52-59. SHEN Xing, YE Aijun. Analysis on lateral seismic performance of inverted Y-shaped concrete tower for long span cable-stayed bridges[J]. China Journal of Highway and Transport, 2015,28(11):52-59. (in Chinese)
[8] 易江, 孙平宽, 李建中. 斜拉桥横向减震振动台试验[J]. 振动与冲击, 2018, 37(3):47-53. YI Jiang, SUN Pingkuan, LI Jianzhong. Shaking table tests for transverse aseismic control of cable-stayed bridges[J]. Journal of Vibration and Shock, 2018, 37(3):47-53. (in Chinese)
[9] Chang K C, Mo Y L, Chen C C, et al. Lessons learned from the damaged chi-lu cable-stayed bridge[J]. Journal of Bridge Engineering,2004, 9(4):343-352.
[10] Xie W, Sun L. Experimental and numerical verification on effects of inelastic tower links on transverse seismic response of tower of bridge full model[J]. Engineering Structures, 2019, 182:344-362.
[11] Zhou L, Wang X, Ye A. Shake table test on transverse steel damper seismic system for long span cable-stayedbridges[J]. Engineering Structures,2019, 179:106-119.
[12] 王瑞龙, 徐艳, 李建中. 一致激励下的混凝土斜拉桥振动台试验[J]. 同济大学学报(自然科学版). 2015,43(3):357-363. WANG Ruilong, XU Yan, LI Jianzhong. Shake table test of a concrete cable-stayed bridge subjected to uniform seismic excitation[J]. Journal of Tongji University(Natural Science), 2015,43(3):357-363. (in Chinese)
[13] Wang R, Xu Y, Li J. Transverse seismic behavior studies of a medium span Cable-Stayed bridge model with two concretetowers[J]. Journal of Earthquake Engineering,2017, 21(1):151-168.
[14] 叶爱君, 周连绪, 陈光,等. 大跨度斜拉桥倒y形混凝土桥塔的横向拟静力试验[J]. 土木工程学报, 2018,51(9):66-74. YE Aijun, ZHOU Lianxu, CHEN Guang, et al. Lateral quasi-static test of inverted Y-shaped concrete tower for long span cable-stayed bridges[J]. China Civil Engineering Journal, 2018,51(9):66-74. (in Chinese)
[15] Wang X, Fang J, Zhou L, et al. Transverse seismic failure mechanism and ductility of reinforced concrete pylon for long span cable-stayed bridges:Model test and numerical analysis[J]. Engineering Structures, 2019, 189:206-221.
[16] 孙利民, 谢文. 超大跨斜拉桥多点振动台试验研究[J]. 工程力学, 2016,33(11):38-48. SUN Limin, XIE Wen. Experimental studies on super long-span cable-stayed bridge by using multiple shake table testing[J]. Engineering Mechanics, 2016,33(11):38-48. (in Chinese)
[17] Camara A, Cristantielli R, Astiz M A, et al. Design of hysteretic dampers with optimal ductility for the transverse seismic control of cable-stayed bridges[J]. Earthquake Engineering & Structural Dynamics, 2017, 46(11):1811-1833.
[18] 陈旭, 李建中. 主塔塔形对独塔斜拉桥主塔横向地震反应影响[J]. 世界地震工程, 2015, 31(1):240-246. CHEN Xu, LI Jianzhong. Influence of tower type on transverse seismic response of single pylon cable-stayed bridge[J]. World Earthquake Engineering, 2015, 31(1):240-246. (in Chinese)
[19] Yi J, Li J. Experimental and numerical study on seismic response of inclined tower legs of cable-stayed bridges duringearthquakes[J]. Engineering Structures,2019, 183:180-194.
[20] 徐艳, 童川, 李建中. 漂浮体系斜拉桥黏滞阻尼器参数的简化计算[J]. 同济大学学报(自然科学版), 2018,46(5):574-579. XU Yan, TONG Chuan, LI Jianzhong. Simplified calculation of viscous damper parameter for floating-system cable-stayed bridge. Journal of Tongji University(Natural Science), 2018, 46(5):574-579, 638. (in Chinese)
[21] 张文献, 王广涛, 仝培周,等. 斜拉桥主塔塔型及塔高的优化分析[J]. 东北大学学报(自然科学版), 2011,32(12):1770-1774. ZHANG Wenxian, WANG Guangtao, TONG Peizhou, et al. Optimization analysis on the shape and height of main tower in cable-stayed bridge[J]. Journal of Northeastern University (Natural Science), 2011,32(12):1770-1774. (in Chinese)

相似文献/References:

[1]杨喜文,张文华,李建中.大跨度斜拉桥横桥向减震研究[J].地震工程与工程振动,2012,32(01):086.
 YANG Xiwen,ZHANG Wenhua,LI Jianzhong.Seismic design for long-span cable-stayed bridges in transverse direction[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2012,32(03):086.
[2]布占宇,谢旭,郑荣跃.索-桥动态相互作用及行波效应对斜拉桥地震反应的影响[J].地震工程与工程振动,2011,31(02):082.
 BU Zhanyu,XIE Xu,ZHENG Rongyue.Study on effects of travelling waves on the seismic responses of cable-stayed bridges in consideration of dynamic cable-deck interaction[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2011,31(03):082.
[3]李立峰,刘本永,张晨熙,等.中等跨径斜拉桥塔梁弹性约束装置的减震效应研究[J].地震工程与工程振动,2013,33(01):146.
 LI Lifeng,LIU Benyong,ZHANG Chenxi,et al.Research on the seismic performance of mid-span cable-stayed bridges with elastic constraints between tower and beam[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2013,33(03):146.
[4]李忠献,齐怀展,朱劲松.基于模态曲率法的大跨度斜拉桥损伤识别[J].地震工程与工程振动,2007,27(04):122.
 LI Zhongxian,QI Huaizhan,ZHU Jingsong.Damage identification for long-span cable-stayed bridge based on modal curvature method[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2007,27(03):122.
[5]瞿伟廉,刘嘉,涂建维,等.天兴洲公铁两用斜拉桥主梁纵向列车制动振动反应分析[J].地震工程与工程振动,2008,28(01):130.
 QU Weilian,LIU Jia,TU Jianwei,et al.Longitudinal response analysis of Tianxingzhou highway and railway combined cable-stayed bridge subjected to train braking and traffic[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2008,28(03):130.
[6]文永奎,孙利民.大跨度斜拉桥钢塔施工阶段制振用TMD、TLD装置及其性能试验[J].地震工程与工程振动,2008,28(03):157.
 WEN Yongkui,SUN Limin.TMD,TLD and performance tests for vibration control of steel tower of large span cable-stayed bridge during construction[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2008,28(03):157.
[7]王贵春,潘家英,陈淮.考虑约束扭转的斜拉桥车激横向振动分析[J].地震工程与工程振动,2008,28(05):065.
 WANG Guichun,PAN Jiaying,CHEN Huai.The lateral dynamic analysis of cable-stayed bridge due to vehicle when considering restrained torsion[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2008,28(03):065.
[8]武芳文,赵雷.地震动空间变异性对千米级斜拉桥结构随机地震反应的影响[J].地震工程与工程振动,2009,29(05):118.
 WU Fangwen,ZHAO Lei.Influence of spatial variation of seismic ground motion on thousand-meter scale cable-stayed bridge[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2009,29(03):118.
[9]林均岐,白春旭,陈永盛,等.多点激励下大跨度斜拉桥地震反应分析[J].地震工程与工程振动,2009,29(06):154.
 LIN Junqi,BAI Chunxu,CHEN Yongsheng,et al.Study on the seismic response of cable-stayed bridges with multi-support excitations[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2009,29(03):154.
[10]何承义,彭志苗,王景波.预应力混凝土斜拉桥的地震响应分析[J].地震工程与工程振动,2005,25(05):137.
 He Chengyi,Peng Zhimiao,Wang Jingbo.Seismic analysis of PC cable-stayed bridge[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2005,25(03):137.

备注/Memo

备注/Memo:
收稿日期:2019-11-11;改回日期:2020-02-05。
基金项目:天津大学-福州大学自主创新基金项目(TF1903);北京市博士后基金资助项目(2018-ZZ-032);中国博士后基金项目(2018M631292);福建省自然科学基金项目(2019J01233)
作者简介:张超(1985-),男,副研究员,博士,主要从事大跨桥梁抗震及减震研究.E-mail:zhangchao1985@fzu.edu.cn
更新日期/Last Update: 1900-01-01